
UNIVERSITY OF CALIFORNIA

Santa Barbara

Compiler Estimation of Parallelism and

Communication

for Quantum Computation

A thesis submitted in partial satisfaction

of the requirements for the degree of

Masters of Science

in

Electrical and Computer Engineering

by

Je�rey P Heckey

Committee in Charge:

Professor F. Chong, Chair

Professor T. Sherwood

Professor B. Parhami

September 2014

The thesis of
Je�rey P Heckey is approved:

Professor T. Sherwood

Professor B. Parhami

Professor F. Chong, Committee Chairperson

August 2014

Compiler Estimation of Parallelism and Communication

for Quantum Computation

Copyright© 2014

by

Je�rey P Heckey

iii

To my family for their undying support, my

mother who irrationally believes in me, my

uncle for familial, emotional, and ethanolic

support, my two dads for encouraging me,

my fellow researchers, without whom I

would have never gotten this far or learned

so much, my professors for engaging me, and

to circumstances beyond my control for

allowing me this opportunity.

iv

Acknowledgements

Fred Chong, Margaret Martonosi, Ken Brown have been instrumental in guid-

ing and shaping the research presented here. Ali Javadi Abhari, Shruti Patil,

Daniel Kudrow, and Adam Holmes are talented researchers, whose assistance and

works have been invaluable.

v

Abstract

Compiler Estimation of Parallelism and Communication

for Quantum Computation

Je�rey P Heckey

Quantum computing promises to speed up scienti�c and computationally in-

tensive operations. However, the power of quantum computing is limited by the

relatively small window of time where the quantum state and be maintained (co-

herent). To achieve maximum e�ciency, not merely to keep this state coherent but

to increase computational productivity, maximizing the parallelism of the system

is important. The architectural model that is explored here attempts to exploit

the relatively small number of operations that are actually performed within a

quantum computer to maximize �ne-grained, data level parallelism, as opposed

to the more common coarse-grained, task level parallelism. This model represents

a Multi-SIMD processor design, where multiple SIMD cores are used to boost data

level parallelism, but allows for limited task indepence.

The purpose of this work is to explore the e�ectiveness of parallel process-

ing in a Multi-SIMD quantum architecture. It examines the ability to speedup

computation using a combination of parallel processing scheduling and commu-

nication awareness, showing up to 7.8X speedup. This information is then used

vi

to extract theoretical requirements for bandwidth (>8000 qubits/cycle peak) and

throughput (3 qubits/cycle sustained). This research leverages the Sca�CC com-

piler toolchain [26], which provides a logical-level (i.e., implicitly error-corrected)

quantum assembly output as the input to be scheduled and analyzed.

vii

Contents

Acknowledgements v

List of Figures x

List of Tables xii

1 Introduction 1

2 Background 5

2.1 Quantum Computation . 5
2.2 Quantum Technologies and Architectures 10
2.3 Data Movement and Teleportation 14
2.4 Sca�old, CTQG, and QASM . 16
2.5 Execution Model . 21

3 Methods 23

3.1 Quantum Benchmark Algorithms Used 24
3.2 Ready Critical Path (RCP) Algorithm 26
3.3 Longest Path First Scheduling (LPFS) Algorithm 30
3.4 Hierarchical Scheduling . 31
3.5 Algorithm Optimizations . 33

4 Results 41

4.1 Runtime Speedup of Instruction- and Data-Level Parallelism . . . 43
4.2 Runtime Speedup with Data Movement Analysis 47

4.2.1 Data-parallelism Sensitivity 49
4.2.2 RCP Con�guration Variability 50
4.2.3 LPFS Con�guration Variability 51

viii

4.3 Communication Costs, Requirements and Limits 52
4.3.1 Sustained Throughput Requirements 53
4.3.2 Peak Bandwidth Limits 54

5 Related Work 60

6 Future Work 63

7 Conclusion 65

Bibliography 67

A Supplementary Data 79

B Example Schedule 81

B.1 Source Code . 81
B.2 Flattened LLVM Output . 83
B.3 QASM Output from LLVM . 87
B.4 Leaf Schedules . 87
B.5 Full Schedule . 89

C Resources 90

ix

List of Figures

2.1 The Bloch Sphere is a mathematical representation of the possible
states of a qubit or an n-qubit quantum system in 2n-dimensional space. 6
2.2 Microwave controlled ion trap. Installed device with microwave
inputs. Reproduced with permission from [50]. 11
2.3 Block diagram of Multi-SIMD quantum architecture based on ion
traps controlled by microwave technology. k operating regions each sup-
port quantum operations on d qubits simultaneously. Each operating
region has a local memory for storing qubits. EPR qubit pairs are
prepared near the global memory and distributed among regions via
quantum teleportation. 13
2.4 Communicating the state of q1 using quantum teleportation: The
EPR pair of q2/q3 is distributed prior to teleportaion, keeping q2 near the
communication source q1, and using q3 as the communication destina-
tion. By measuring the states of q1 and q2, and classically transmitting
those measurement results (classical 0 and 1 bits), the state of q3 takes
on that of q1 using none, one, or both of the X and Z operations at the
target side. This completes the transmission of q1 to q3, while the state
of q1 is destroyed in the process. 14
2.5 Data �ow through the Sca�CC toolchain 16
2.6 Histogram of gate counts represented as percentage of total mod-
ules in benchmarks. Using a �attening threshold of 2M operations, 80%
or more modules were �attened for �ne-grained scheduling for all bench-
marks except SHA-1. For SHA-1, a �attening threshold of 3M was used
to �atten the entire benchmark. 21

x

4.1 The speedup over sequential execution of each benchmark with
each scheduling algorithm, compared to the estimated critical path. Al-
most all algorithms, except Shor's, achieve near-complete speedup by k
= 4. 44
4.2 Shor's algorithm speedups as scheduled with a communication-
aware scheduler on a Multi-SIMD architecture with local memories.
High numbers of rotations cause long serial threads of operations to
each execute on a separate SIMD region, thus getting better gains with
higher k. 45
4.3 The speedups using a communication-aware scheduler over a se-
quential, naive movement model. All benchmarks show improvement
over Fig. 4.1, with GSE and Shor's showing the largest gains. 48
4.4 The speedup of GSE, SHA-1, and Shor's algorithm with respect to
d, including communication. 56
4.5 Speedups with movement costs, varying the RCP options. The
weights for scheduling priority are based on Operation type (O), Dis-
tance (D), and Slack (S). Little variation is seen. 57
4.6 Speedups with movement costs, varying the LPFS options. Op-
tions include l, SIMD and re�ll. Typically l = 1 is preferred, as is SIMD
operation, though GSE has an odd outlier for non-SIMD. 58
4.7 The average throughput of the benchmark over its execution, in
qubits per cycle. Teleportation overhead cycles are included in the total
runtime. This gives a minimum communication cost need to sustain
operation. 59
4.8 The peak bandwidth (or most moves seen in a single cycle) of a
benchmark. This gives an upper bound for ideal scheduling of benchmarks. 59

A.1 The percent error of the scheduling algorithms from the ideal speedup.
Largely dominated by the low k values for Shor's, though TFP can also
be improved with higher k. 79
A.2 The percentage of increase in speedup between runtimes without
movement costs and with movement costs, plotted logarithmically. All
speedups improve, typically nearly constant values within a scheduling
algorithm. In more serial algorithms, LPFS shows greater reduction in
total moves (larger gains). Both Shor's and TFP seem to bene�t more
from increased instruction level parallelism (higher k) than from reduced
data overhead. 80

xi

List of Tables

4.1 Parallel rotations cannot be executed simultaneously on a hard-
ware with primitive operations, unless there are enough SIMD regions
to accommodate them. 46

xii

Chapter 1

Introduction

Quantum Computing (QC) has been known for decades for its potential to

speed up algorithmically complicated computations [46]. QC has progressed to

the point that certain classes of quantum computers are available commercially

[1]. Many algorithms have been developed for quantum computers for such diverse

applications as Fourier transforms and signal processing, database search, linear

equation solvers, and molecular chemistry simulations [15, 19, 21, 60]. The algo-

rithms typically allow for polynomial time implementations for algorithms with

exponential runtimes in classical computers.

Of course, if it were easy it would be done by now. The main challenge to

QC is coherence. The computer's state must be maintained in a state of quantum

superposition throughout the duration of the computation: it must be coherent.

When a computation is complete, precise measurements are made, collapsing this

superposition, and providing a result for the algorithm. If the computer decoheres

1

Chapter 1. Introduction

during the computation, it is a bit like a power surge in a regular computer; if the

system doesn't fail, an answer may be produced but may be incorrect.

Combating decoherence is done primarily two ways. The �rst is the applica-

tion of quantum error correction control (QECC) to encode the data in a way that

computations can be performed, but errors can be detected and corrected peri-

odically [23, 53, 54, 55]. The second is architecturally, by structuring the design

of the quantum computer so as to minimize the computation time. These two

approaches buttress each other, with architectural design reducing the need for

prohibitively large amounts of expensive error correction operations, and QECC

providing a large amount of parallelism to exploit and improve the overall utiliza-

tion of the system. Since QECC dominates both resources and runtime in large

algorithms and datasets, the greater the reduction in runtime, the less QECC

needs to be done, simplifying the whole system. The focus of this work is on

the architectural approach. By exploiting parallelism in the algorithms at a �ne-

grained level and minimizing the communication overhead, this work intends to

maximize the amount of computation that can be performed before the system

decoheres.

Several types of quantum computers have been built [1, 29, 37]. Since 2003,

ion-trap designs have been a lead contender in scalable quantum computer designs

[3, 7, 11, 16, 27, 45, 59, 61, 62]. This design uses individual ions to encode

2

Chapter 1. Introduction

the physical quantum bits (qubits) and uses energy pulses from either lasers or

microwaves to perform operations on these ions. Several architectures have been

proposed for this technology [39, 58] that exploit its potential for parallelism.

This work seeks to reduce the runtime of benchmark quantum algorithms by

examining the available parallelism within them, monitoring the communication

requirements and eliminating unnecessary communication. As one of the prelim-

inary surveys at this scale, determining potentially valuable avenues of research

is also important. Some of the work presented here is also available reported in

[22, 25, 26].

The research here leverages the e�orts of the Sca�old team. Together we have

built a compiler infrastructure that allows for a high-level, C-like description of

the algorithm in the Sca�old language. The Sca�CC toolchain then compiles the

algorithm and generates a gate-level view of the algorithm. These gates are the

basis for reasoning about the architectural trade-o�s between data-dependencies,

parallelism, fault-tolerance overhead, communication overhead, execution time,

and control constraints.

This work contributes to the growing body of quantum algorithm research by:

• extending the breadth and utility of Sca�CC to evaluate quantum architec-

tures;

3

Chapter 1. Introduction

• being the �rst known e�ort to calculate the needs and trade-o�s of commu-

nication in QC;

• proposing baseline algorithms to determine these values;

• comparative valuations of these scheduling algorithms;

• providing numerical values for communication throughput and bandwidth.

The remainder of this work is organized as follows: Chapter 2 discusses the basics

of QC and the body of work being extended. Chapter 3 discusses speci�cs of the

quantum algorithms evaluated, how they were chosen, and the technical details of

the analysis. Chapter 4 and Chapter 7 discuss the analyses and their relationship

and draws conclusions.

4

Chapter 2

Background

In order to understand the relevance of this work, it is helpful to have a base-

line understanding of quantum computing principles. This section is intended to

brie�y describe how quantum computations are performed, the architectures tar-

geted by this work, and the details of how the analyses are performed using the

Sca�old language and Sca�CC toolchain.

2.1 Quantum Computation

The fundamental unit of data in quantum computer is the qubit. A qubit

stores a single logical value and can be modi�ed by a number of various gates or

operations; this is similar to a classical computer. The di�erence is that the qubit

is held in superposition, a probabilistic combination of 1 and 0. This is represented

in Bra-Ket notation as |α〉+ |β〉, where α and β are normalized complex numbers,

such that |α|2 + |β|2 = 1. This allows the quantum state to be modeled as a

5

Chapter 2. Background

Figure 2.1: The Bloch Sphere is a mathematical representation of the possible
states of a qubit or an n-qubit quantum system in 2n-dimensional space.

unit vector with an arbitrary phase. Both models can be extended to n qubits by

extending this vector to 2n-dimensional space. This vector can be mapped on to

the Bloch Sphere (Figure 2.1), where any position on the surface of the sphere is

a valid, unique superposition state for the quantum system.

Bloch Sphere rotations are norm-preserving, so the vector is always unit length.

Rotations can be performed around any axis. In a typical quantum computer,

common �gates� are de�ned with speci�c rotations around speci�c axes. Common

rotation gates are X, Y, and Z (a π radian rotation around their respective axis); S

and T gates (π
2
and π

4
radian rotations) and their inverses, S�and T� (−π

2
and −π

4
).

These gates are common in practice, though T gates in particular are expensive

in terms of execution time and accuracy. The X gate is also called NOT because

6

Chapter 2. Background

it will swap the coe�cients of α and β in the Bra-Ket formulation. Two other

gates make up the minimal set of gates required for quantum computation: the

H (or Hadamard) gate is used to initialize a qubit to a superposition by giving

both |0〉 and |1〉 equal probability, and the CNOT (or Controlled-X) gate is used

to conditionally �ip the state of one qubit based on the on the value of another.

These nine gates describe the minimal universal of primitive gates and are the

only gates used by Sca�old [26] (Section 2.4).

Gates in quantum systems are unlike logic gates in a traditional computer.

While they have a physical location, any single location can implement any of the

unitary (single qubit) operations, and adjoining gates can be used for CNOTs.

The gate operation is instead controlled by external, energetic wave interactions,

either electronic, magnetic, or photonic, which manipulate the quantum of state

of the qubit within the gate.

More advanced gates exist that can be built out of this set. These gates include

the To�oli, a quantum NAND gate which is universal unto itself; the SWAP, which

swaps the state of two qubits; and the Fredkin, a controlled SWAP [42]. All of

the multi-qubit gates are reversible. This means that these gate have no fan-in

or fanout, so a qubit must be supplied for each input and output. This is due to

the no-cloning theorem [42], which says that the state of a single qubit cannot be

copied to another qubit and be left unchanged itself. As qubits interact in these

7

Chapter 2. Background

gates, they become entangled, all qubits' states now being related to each other

in some way.

These entanglements enable one of the more interesting aspects of quantum

computing: teleportation. Entanglement allows for what Einstein called �spooky

action at a distance� [5]: the ability for entangled particles to share information

faster than light. By entangling two particles, their states are each a superposition

of each other, such that observing the state of one instantly collapses the state of

the other to a known state. Teleportation takes advantage of this by entangling

two particles and then physically transferring one of the pair to the desired lo-

cation. By entangling the qubit to be transported with a new temporary qubit,

an ancilla qubit, and measuring both, the superposition can be recreated in the

qubit at the destination. Teleportation is heavily used in quantum computing to

move data quickly between locations (say a processor and memory) before the

qubit's state has time to lose coherence.

Decoherence is the major obstacle to quantum computing. It puts a limit

on the amount of time that can be used for computations before errors start

creeping into the system. This can be counteracted by the use of Quantum Error

Correction (QECC). By encoding logical qubits with redundant physical qubits,

typically using Steane Codes [54], quantum computers can tolerate a certain error

rate during processing allowing the computation to run inde�nitely. The challenge

8

Chapter 2. Background

is that typical error correction overhead requires a two-level, recursive Steane code

that encodes each logical qubit as 49 physical qubits and requires 23,409 timesteps

after each normal computation timestep. As the amount of time spent doing

error correction is so onerous, reducing a small amount of time spent on these

computations has a large impact in overall performance.

There is one time that decoherence is good, though. When a qubit is mea-

sured it decoheres and loses its superposition, turning it into a classical 0 or 1

state. This measurement is how data is retrieved from the quantum computer.

By measuring the �nal output qubits, the quantum wavefunction collapses to a

deterministic state and an answer is available. However, since the superposition

state of any qubit is described as the probability of being a 0 or 1, the �nal is not

guaranteed to be the correct answer. Instead, a probable answer is returned and

the computation is rerun multiple times to ensure certainty. Despite measurement

causing a wavefunction to collapse and the attendant e�ects on entangled qubits,

measurement is necessary for both teleportation and QECC while a computation

is ongoing. The quantum superposition is preserved because each qubit is entan-

gled with several others, so while the measured qubit state is now known other

qubits in the system are still in superposition.

9

Chapter 2. Background

2.2 Quantum Technologies and Architectures

Many technologies can produce and control quantum computations: harmonic

oscillators, optical photon, optical cavity, ion traps, nuclear magnetic resonance,

etc. [42]; all of these have their strengths and trade-o�s. The target of this

research is ion traps since it appears to have the most promise of a realizable

quantum system at this time. Ion traps can initialize and measure well character-

ized qubits with long decoherence times, and the technology has a universal set

of high-precision, low error gates for performing calculation [16, 36, 40, 48]. The

DiVincenzo criteria [14] requires all of these for realistic quantum computation.

Experimental results have also shown the viability of all of the major features

needed to construct a quantum computer with ion traps, including basic opera-

tion of moving, addressing, performing logical operations and storing qubits [63],

entanglement [6], two-bit quantum gates [16], teleportation [47], and quantum

error correction [9].

Typical ion trap designs will use lasers to operate on single ions (physical

qubits) within the system. While that is functional, the lasers themselves re-

quire careful phase alignment and are physically large which presents signi�cant

di�culty in scaling the number of lasers that can used to control qubits. Some

schemes have been proposed to use mirror arrays to allow for SIMD-style vec-

10

Chapter 2. Background

tor operations, where multiple qubits will go through the same operation with a

single laser controlling all of them [29]. Another control strategy involves using

microwaves, which could allow for a much larger qubit fanout [27, 50].

Figure 2.2: Microwave controlled ion trap. Installed device with microwave inputs.
Reproduced with permission from [50].

Microwave controlled ion traps such as those shown in Figure 2.2 can scale

much more easily than laser controls. An individual microwave signal can be used

to control up to 100 qubits at a time [50], and splitting microwaves in a coaxial

cable is much less technically di�cult than controlling a mirror array for lasers.

By fanning out the microwaves to 10 to 100 di�erent arrays, up to 10,000 qubits

may have the same operation performed on them simultaneously. This system

could then be replicated to support multiple operations in parallel, allowing for

operational level parallelism as well as data parallelism.

11

Chapter 2. Background

This architecture of having multiple discrete processing regions, each capable

of executing a single operation on multiple qubits, is what enables the so-called

Multi-SIMD(k,d) quantum processor model that is the basis for this work. The k

value determines the number of computation regions in the system. This value is

typically small (1-4) due to the limited parallelism found in the algorithms that

are used (see Sections 3.2 and 3.3). The d value refers to the number of qubits

that can be operated on in a given SIMD region. This architecture also allows for

unused SIMD regions to hold qubits for brief periods, essentially acting similarly

to general purpose registers in a classical computer. This spatial property allows

for reduced communication overhead, as shown in later sections.

By further incorporating ideas from Compressed Quantum Logic Array (CQLA)

[58], whereby individual tiles are laid out to either be compute or memory, coher-

ence within the system can be improved. Quantum computation su�ers from a

duality: computation requires qubits to be easily modi�ed, but still be tolerant to

noise and outside sources of error for long enough to do reasonable calculations.

The idea behind CQLA is that compute regions can use smaller amounts of QECC

while performing computations, while memory regions can use larger amounts of

QECC to reduce the frequency with which error correction has to be performed

while qubits are stored there. A global memory region is added to the 1-4 compute

12

Chapter 2. Background

Channels(
for(EPR(pair(
distribu5on(

SIMD(opera5on(
zones(

Teleporta5on(Unit(

Global(Quantum(
Memory(

Cap5on(to(say(k(regions(
opera5ng(on(d(qubits(each.(

Local(
Quantum(
Memory(

Heterogeneous(
microwave(
control(signals(

Combined(Figure(

Figure 2.3: Block diagram of Multi-SIMD quantum architecture based on ion traps
controlled by microwave technology. k operating regions each support quantum
operations on d qubits simultaneously. Each operating region has a local memory
for storing qubits. EPR qubit pairs are prepared near the global memory and
distributed among regions via quantum teleportation.

SIMD regions above to store the logical qubits that will not be operated on in the

current timestep. An example of this architecture is shown in Figure 2.3.

Note that the centralized global memory is a simpli�cation that results from

teleportation which makes the latency of long-distance communication constant

(see Section 2.3). This constant global communication cost favors parallelism,

since the latency of a single qubit move is the same as d qubits, or even k times

d, because the operations needed to execute teleportation are the same, but the

actual communication requires no physical transport channel. In fact, parallelism

13

Chapter 2. Background

breaks the computation into �ner-grain chunks on separate regions. This reduces

global memory accesses by leveraging local storage in regions and optional local

memories, which is analogous to spatial computing approaches in classical com-

puting [17, 56, 57].

Overall, e�cient use of Multi-SIMD requires orchestration of qubits to max-

imize parallelism and to reduce qubit motion. Devising and evaluating e�ective

scheduling techniques for Multi-SIMD is the focus of this work.

2.3 Data Movement and Teleportation

Source

|q1〉 • H •

|q2〉 •

|q3〉 Z X

Destination

Figure 2.4: Communicating the state of q1 using quantum teleportation: The
EPR pair of q2/q3 is distributed prior to teleportaion, keeping q2 near the commu-
nication source q1, and using q3 as the communication destination. By measuring
the states of q1 and q2, and classically transmitting those measurement results
(classical 0 and 1 bits), the state of q3 takes on that of q1 using none, one, or both
of the X and Z operations at the target side. This completes the transmission of
q1 to q3, while the state of q1 is destroyed in the process.

At a physical level, communication in the Multi-SIMD(k,d) architecture is as-

sumed to be achieved through quantum teleportation, a phenomenon that makes

14

Chapter 2. Background

transmission of exact qubit states possible. Teleportation requires a pre-distribution

of entangled Einstein-Podolsky-Rosen (EPR) pairs of qubits between the regions

where communication will occur. EPR pairs are generated at the global memory,

and distributed to the required regions. Figure 2.4 illustrates the computations

required. The communication cost per move is four times as high as a single

quantum gate operation; in a naive movement model, this quintuples the actual

compute cost because of repeatedly moving qubits between SIMD regions and the

global memory. In many cases the compiler can schedule teleportation operations

in parallel with the computation steps.

In order to perform teleportation, EPR pairs must be distributed to each SIMD

region and global memory so that the sender and receiver each have one half of the

pair. The distribution of such EPR pairs has been studied in detail in [61]. Since

repeated movement of qubits on the physical fabric is error-prone, teleportation

reduces quantum decoherence by communicating information through a classical

channel. While teleportation has constant latency with communication distance,

longer distances do imply higher EPR bandwidth requirements (larger commu-

nication channels to move enough EPR pairs throughout the architecture). To

minimize EPR bandwidth requirements, future work will investigate distributed

global memory and compiler algorithms for mapping to such a non-uniform mem-

ory architecture.

15

Chapter 2. Background

2.4 Sca�old, CTQG, and QASM

Classical%
Control%

ResoluAon%

Gate%
DecomposiAon%

Scaffold&
Program& QASM1HL&

Clang%
FrontH
end%

LLVM1IR&

InstrucAon%Reordering%

NoHCloning%Check% Entanglement%Analysis%

Timing%Analysis%

Resource%Analysis% RemodularizaAon% Analysis&
Output&

Q
ua

nt
um

'P
ro
gr
am

'
An

al
ys
is
'

CTQG%%
SeparaAon%

Scaffold&
Quantum&
Modules&

QASM%Linker%

QASMHtoHIR%LLVM1IR&

Q
AS

M
'

Ge
ne

ra
5o

n'

CTQG%%
CompilaAon%

CTQG&
Classical&
Modules&CT

Q
G'

Tr
an

sl
a5

on
'

Figure 2.5: Data �ow through the Sca�CC toolchain

The Sca�old and CTQG languages [25, 26] were developed to assist in the

analysis of the quantum algorithms used in this project. Both languages are

C-like in their basic form, but each has its own distinct syntax. A complete

Sca�CC toolchain was built around the LLVM Compiler Framework [35], shown

in Figure 2.5. This �ow outputs QASM-HF, a quantum assembly language where

all structure other than functional hierarchy is removed. Analyses of the compiled

Sca�old code are performed based on the LLVM IR and QASM �les for the results

presented here.

The Sca�old language is a C-like language developed using the Clang frontend

to LLVM. It allows a programmer to develop quantum algorithms in a familiar

way, with the use of modules to describe reusable functionality and common �ow

control syntax like if-then-else, and loops. CTQG can be incorporated directly into

16

Chapter 2. Background

Sca�old �les as modules and are separately compiled to QASM, but is processed

through a di�erent path in toolchain �ow. While the LLVM compiler framework

may be overkill for Sca�old's limited relatively small and uncomplicated feature

set, it does provide a solid framework and libraries for handling compiler opti-

mizations and code analysis. The major limitation is that all control structures

in Sca�old must be classical, so while a particular set of gates could be told to

iterate over all the qubits in a qubit array (a quantum register, or qureg), it can't

determine the value of a qureg and loop over a qureg that number of times. This

limitation is predominantly imposed by the superposition nature of the data � the

loop would actually need to be performed with a probability distribution equal

to the quantum superposition state of that qureg, which can't be done with dis-

crete gates. This disconnect between the classical operation and quantum data

results in a need for many operations that are typically conditional or recursive

to be structured in �xed length and deterministic ways. Classical loops are typ-

ically handled by unrolling the loop at compile time; this is often coupled with

aggressive constant propagation in order to determine the loop size.

CTQG (Classical-To-Quantum-Gates) alleviates some of the more challenging

restrictions by allowing for arithmetic and conditional expressions with quregs. It

can decompose assignment, basic addition, subtraction, multiply-accumulate, in-

teger comparisons, and even some limited �xed point arithmetic and trigonometric

17

Chapter 2. Background

functions. Many of the simple arithmetic operations (addition, subtraction) can

be performed using a recently developed algorithm by Cuccaro et al [12], with

extensions provided for multiplication. CTQG does support limited conditional

clauses (if-then-else) on quantum data through the use of CNOTs to create arbi-

trary controlled unitaries, operations that are only performed if certain conditions

are met. CTQG is still limited to classically controlled loops; while loops, even

over classical variables, do not exist; for loops over a range known at compile time

will be unrolled into a sequence of gates. After the QASM was generated, it is

reinserted into the QASM where the module was declared to run through the rest

of the �ow with the main code.

While the Sca�CC toolchain is largely a compiler, the bulk of the e�ort here

has gone into the backend optimizers and analyzers. The �rst step in this research

was to determine resource usage and determine the rough size of the algorithms

proposed. This includes qubits, ancilla qubits, gates, and overall runtime. In order

to achieve this optimization passes were made using static analysis of the program

structure to �nd a purely gate level implementation. In order to remove control

structures, which are entirely classical, all of the constants in the program need to

be propagated through the program. For loops with de�ned bounds can simply

be unrolled; this is only a matter of running the built-in LLVM loop unroller with

a high enough threshold. While constant propagation is simple enough in a single

18

Chapter 2. Background

function, if a function is called multiple times with a constant argument, in a loop

or even by di�erent functions, the function's input arguments will be converted to

constants and the function will be cloned with those new arguments hardcoded.

The LLVM optimization framework made it easy to clone the functions and replace

the original.

An additional pass was added to handle arbitrary rotation gates, Rx, Ry,

and Rz. Often in quantum algorithms, a qubit will need to be rotated with

arbitrary precision. A new optimization pass was added to �nd all of the rotation

operations after constant propagation and use the Solvay-Kitaev algorithm [13, 33]

to decompose the arbitrary rotations into discrete series of the gates described in

Section 2.1. In order to perform the SK decomposition, the Single Qubit Circuit

Toolkit (SQCT) [30, 31, 32, 52] was called as a modi�ed static binary by the

optimization pass. The decompositions were then inserted into the location of

the rotation operation. Again, LLVM made it easy to modify the code quite

e�ectively.

Once these optimization are complete, the program consists entirely of basic

gates and modular hierarchy. The static code can then be analyzed for resource

counts and scheduling purposes. Resources are analyzed by determining how

many qubits are used within any function along with the number of ancilla qubits

used. Scheduling is done by analyzing the data dependencies on the qubits and

19

Chapter 2. Background

establishing the necessary order of operations, then mapping to the resources

allotted. Since scheduling is the main topic of this work, it is discussed more in

the following sections.

Larger leaf modules provide more opportunities for good �ne-grained schedul-

ing, but when leaf modules are too large the scheduling time becomes unacceptably

long. To �nd this balance, a �attening threshold (FTh) is chosen to increase the

potential parallelism while keeping the scheduling time reasonable. The number

of gates within each module, including submodules, are found by performing re-

source estimation analysis on them. If any module's size is less than the �attening

threshold, then the module is �attened, i.e. all the function calls contained within

it are inlined. This results in leaf modules that consist of at most FTh operations.

The �attening threshold is determined by characterizing the initial modularity

within a program. Figure 2.6 shows the percentage of modules with gate counts

falling within speci�ed ranges. This reveals the proportion of modules that could

be �attened for a certain �attening threshold. Based on these and other exper-

iments, the remainder of the analyses use FTh set to 2 million operations. This

�attened 80% or more of the modules contained within all benchmarks except

SHA-1. For SHA-1, a �attening threshold of 3 million was used which �attened

the entire benchmark.

20

Chapter 2. Background

0%*

10%*

20%*

30%*

40%*

50%*

60%*

70%*

80%*

90%*

100%*

BF*x=2,*y=2* BWT*n=300,*
s=3000*

CN*p=6* Grovers*n=40* GSE*M=10* SHAa1*n=448* Shors*n=512* TFP*n=5*

Pe
rc
en

ta
ge
*o
f*m

od
ue

ls*
w
ith

*g
at
e*
co
un

ts
*w
ith

in
*a
*

ra
ng
e*

Quantum*Algorithms*with*varying*problem*sizes*

>20M**

8M*a*20M***

2M*a*8M***

1M*a*2M***

150k*a*1M***

100k*a*150k***

50k*a*100k***

10k*a*50k***

5k*a*10k***

1k*a*5k*

0*a*1k*

Figure 2.6: Histogram of gate counts represented as percentage of total modules in
benchmarks. Using a �attening threshold of 2M operations, 80% or more modules
were �attened for �ne-grained scheduling for all benchmarks except SHA-1. For
SHA-1, a �attening threshold of 3M was used to �atten the entire benchmark.

2.5 Execution Model

The Multi-SIMD(k,d) model allows 1 to k discrete, simultaneous operations

to be executed in a single logical timestep, each of which can be applied on 1 to

d qubits apiece. For example, if 10 di�erent qubits all require a CNOT operation

applied to them, these can be positioned within a single operation region and the

CNOT will be applied in a single timestep.

In the compiler all modules are blackboxes, so all active qubits are �ushed to

global memory during calls, since the position of all qubits are assumed to be in

memory at the start of a module. This is mitigated by the fact that module calls

are relatively infrequent and only cause a �xed overhead of a single teleportation

21

Chapter 2. Background

cycle. It is also assumed that all ancilla qubits are generated by the global memory

and teleported to the SIMD region where they are needed.

Teleporting data between SIMD regions also must be orchestrated by the

scheduler so the teleportation sub-operations shown in Figure 2.4 can be sched-

uled. If a qubit physically residing in one region is scheduled in a di�erent region

in the next timestep, it is moved to that region. If no operation is scheduled on

that qubit and that region is active in the next timestep, it is moved to the global

memory region.

The execution models and evaluations assume that each gate operation takes

1 timestep. Communication latencies are also accounted for, taking 4 timesteps.

Some models of QC communication have a latency that varies proportionally to

distance traveled, but QT approaches are distance insensitive. Rather, in QT, the

bulk of the latency of each communication operation is the sequence of four qubit

manipulation steps shown in Figure 2.4. Their schedule can be integrated into the

computation schedule for the program. In order to simplify timestep sequencing

and accounting, each timestep is constrained to the longest operational time, for

example 10µs for a CNOT [42].

22

Chapter 3

Methods

Computer architecture is about balancing the design requirements to �nd the

optimal solution. By studying the communication costs of scheduling quantum

algorithms in a Multi-SIMD architecture the tradeo�s inherent between di�erent

system resources, especially processing vs communication. While this has been

explored extensively in classical computing arenas, this is the �rst work of an

exploration at this level of detail for a quantum architecture. This work applies

techniques pioneered in classical parallel computing to the new �eld of quantum

computing.

The testing approach employed was to run all scheduling algorithms against

a suite of quantum algorithms with various properties in terms of parallelism,

data locality, length, levels of hierarchy, and classes of basic algorithms. The

scheduling is performed with both communication costs and communication free

metrics to demonstrate the true cost of communication within the algorithms.

23

Chapter 3. Methods

Various scheduling parameters were used to in�uence the communication patterns

within the schedules.

Data was processed on a desktop PC running Linux (Ubuntu 13.10). The data

gathered used Sca�CC to compile and generate preliminary schedules, though an

additional script was used to generate most of the schedules for leaf modules.

All the leaf schedules were then scheduled hierarchically to create a complete

algorithm schedule using the Sca�old backend coarse-grained scheduler.

3.1 Quantum Benchmark Algorithms Used

The benchmark algorithms were developed by several researchers over about

three years as a part of the Sca�old e�ort. Speci�cations were provided by IARPA

as benchmarks for demonstrating the e�ectiveness of di�erent quantum compiler

toolchains, of which Sca�CC was one. These benchmarks address many problems

in computer science: factorization, search, eigenvalue estimation, phase estima-

tion, discrete logarithms, and order and period �nding [41]. They are currently

the largest and most sophisticated quantum algorithms developed known. Each

benchmark is given and described below.

• Shor's Factoring Algorithm (SF): The classic example of a quantum algo-

rithm, the �rst killer app. It performs factorization using the quantum

24

Chapter 3. Methods

Fourier transform and operates in polynomial time (instead of exponential

time in classical computers) [51]. The problem size is parameterized by n,

the size in bits of the number to factor.

• Grover's Search Algorithm (GS): Uses a quantum concept called amplitude

ampli�cation to search a database of 2n elements [19]. The problem size is

parameterized by n.

• Binary Welded Tree Algorithm (BWT): Uses quantum random walk algo-

rithm to �nd a path between an entry and exit node of a binary welded tree

[10]. The problem size is parameterized by height of the tree (n) and a time

parameter (s) within which to �nd the solution.

• Ground State Estimation (GSE): Uses quantum phase estimation algorithm

to estimate the ground state energy of a molecule [60]. The problem size is

parameterized by the size of the molecule in terms of its molecular weight

(M).

• Triangle Finding Problem (TFP): Finds a triangle within a dense, undirected

graph [38]. The problem size is parameterized by the number of nodes n in

the graph.

25

Chapter 3. Methods

• Boolean Formula (BF): Uses the quantum algorithm described in [4], to

compute a winning strategy for the game of Hex. The problem size is pa-

rameterized by size of the Hex board (x, y).

• Class Number (CN). A problem from computational algebraic number the-

ory, to compute the class group of a real quadratic number �eld [20]. The

problem size is parametrized by p, the number of digits after the radix point

for �oating point numbers used in computation.

• SHA-1: A quantum implementation of the classical Secure Hash Algorithm

1 [43]. The problem size is parameterized by the size of the message in bits

(n).

Each benchmark has two problem sizes that were chosen based on known

complexity increases within the algorithm (such as SHA1 iterations) or the limits

of the computing hardware running the scheduling (some algorithms, notably TFP

and CN, required special processing in order to complete).

3.2 Ready Critical Path (RCP) Algorithm

The Ready Critical Path (RCP) algorithm was modi�ed from the algorithm

of the same name in [64, 65]. The algorithm is designed to both minimize the

processing time by allowing all (or as many as possible) of its dependencies to

26

Chapter 3. Methods

be already available and to minimize the communications by assigning the task

to the processor where the most data is available, reducing communication costs.

This scheduling is greedy in that the decisions are made based on the current state

of the system without considering future states. In this Multi-SIMD architecture,

the data dependency issues are equivalent between �free� and �ready� tasks due to

the fact that every operation is only a single cycle and can only be free or ready

when all of its dependencies are satis�ed. The secondary concern, data locality,

is of paramount importance, especially when the communication cost is felt so

acutely as in this architecture (up to 80% of the total runtime).

This implementation of RCP bases its prioritization on three factors: the

operation type, the communication costs, and the data dependency slack. Since

the architecture uses SIMD execution, the occurrence of an operation type is

positively correlated with the priority; so if there are 30 CNOT operations and

only two H operations (and all other factors are equivalent), the CNOTs will be

scheduled �rst. The distance priority is calculated by determining if data needs to

move between the SIMD regions or memory. If a qubit is already in a given SIMD

region, it will be more inclined to stay in place, limiting movement in the system.

Additionally, a factor called slack is negatively correlated with priority; slack is

the graph interval between uses of a given qubit (in the case of multiple qubits,

the slack is taken as the minimum distance). This slack factor addresses potential

27

Chapter 3. Methods

greedy scheduling issues by deprioritizing operations that don't require immediate

execution. Slack is decremented at each timestep (to a minimum of 0) in order

to increase urgency over time, preventing starvation or deadlock scenarios. The

priority for each operation is then summed as the priority for a given operation

type for each SIMD region. The highest weight for each SIMD region is then

chosen and scheduled; SIMD regions may be scheduled out of numerical order

based on these priorities. the RCP algorithm is shown in Algorithm 1.

Algorithm 1 The RCP algorithm. At each timestep, it computes the relative
weight for scheduling an operation type to each SIMD region based on the prev-
elence of that operation, the distance of each qubit from that SIMD region, and
the graph distance to the next use of that qubit. The highest weighted opera-
tion type is then scheduled to its preferred SIMD region and the calculation is
repeated until no more operations can be scheduled. The getSimdOp function is
in Algorithm 2 and updateRcpQ is in Algorithm 3.

Function rcp(Module my_module) is
int simd, ts = 0;
OPTYPE optype;
RCP schedule;
OP rcpq[] = my_module.top();
while not rcpq.empty() do

int simds[] = 1..k; while not (simds.empty() or rcpq.empty()) do
{simd, optype} = getSimdOp(rcpq, simds);
schedule[ts][simd] = rcpq.pop_all(it.optype);
simds.delete(simds.�nd(simd));

end

updateRcpQ(ts, rcpq); ts++;
end

end

28

Chapter 3. Methods

Algorithm 2 The getSimdOp function calculates the priorities for each option
in the ready list given the available SIMD regions and returns the optype and the
SIMD region to assign it.

Function getSimdOp(OP rcpq, list of int simds) : {int, OPTYPE} is
for each op in rcpq do

optypeCnt[op.optype()]++
for each qubit in op.args() do

locs[op] |= 1 <�< qubit.simd();
end

// foreach location
end

// foreach op for each simd in simds do
for each op in rcpq do

weight = O * op.optype() + D * (locs[op] & (1 <�< simd)) - S *
op.slack(); if weight > max then

max = weight;
maxSimd = simd;
maxOptype = op.optype();

end

end

end

return {maxSimd, maxOptype};
end

Algorithm 3 The updateRcpQ function adds all newly available operations into
the RCP ready queue.

Function updateRcpQ(int ts, OP rcpq[], RCP schedule) is
for each op in schedule[ts] do

for each child in op.children() do
if child.ready() then

rcpq.push_unique(child);
end

end

op.slack�;
end

end

29

Chapter 3. Methods

3.3 Longest Path First Scheduling (LPFS) Algo-

rithm

The Longest Path First Scheduling algorithm is novel to the best of the au-

thor's knowledge. It was developed based on the idea that long serial paths within

most of the algorithms here would allow qubits to remain in a SIMD region longer,

and thus reduce the communication overhead. The algorithm takes the DAG of

a leaf module and allocates one longest path to each of a subset of the SIMD

regions available. Once all of the allocated SIMD regions are assigned, the re-

maining SIMD regions are used to schedule any other operations that are not

on that path. These operations are pulled from a ready list, which only stores

operations that have all of their dependencies already ful�lled so no con�icts can

arise. Since many operations are single qubits, they will be repeatedly operated on

without intervening qubits moving in and out. Any CNOT operations will require

the single missing operand to move in and out, allowing for a natural overlap in

data dependencies; if the operands can be used before or after the CNOT as well

the moves are reduced further.

One of the challenges of this algorithm is that most longest paths will be of

unequal lengths. If one path is signi�cantly shorter than the next longest, that

SIMD region will be idle until the module's schedule is complete. There are two

30

Chapter 3. Methods

possibilities: open the allocated region to opportunistic scheduling from the ready

list, or �nd another long path to insert into the unused region. This choice is

controlled by the �re�ll� option provided to the algorithm.

Another challenge is that the algorithm as described only allows for a single

operation to be performed per SIMD region. By �lling any SIMD region with as

many operations from the ready list as possible, greater computational e�ciency

can be achieved, though most likely at the cost of communication overhead.

3.4 Hierarchical Scheduling

To allow benchmarks to scale beyond tractable sizes (beyond a few million

operations), a coarse-grained scheduler stitches together optimized schedules for

leaf modules scheduled by RCP and LPFS in the call tree. The scheduler uses

a simple, list-based approach to schedule leaf modules and operations in non-leaf

modules with the goals of improving parallelism and/or reducing communication

overheads.

Given a set of pre-scheduled leaf nodes, the coarse-grained scheduler com-

pletes the program scheduling by using list scheduling to compose together a full

schedule. Operations are assigned priorities based on criticality and scheduled in

priority order. The quantum gate operations in non-leaf modules are scheduled

31

Chapter 3. Methods

along with invocations to other modules. The invoked leaf modules have been pre-

viously scheduled by one of the �ne-grained schedulers discussed next and are now

treated as blackbox functions. Once the schedule for a module is determined, it is

characterized as a blackbox with a length dimension equal to schedule length, and

a width dimension equal to highest degree of parallelism found in the schedule.

To allow the coarse-grained scheduler to e�ectively parallelize the invoked

blackboxes within the width k constraint, �exible rectangular dimensions are

used for each blackbox. During �ne-grained scheduling of each module, multi-

ple schedules are determined to �nd schedule lengths with SIMD widths between

1 to k. The coarse-grained scheduler is presented these blackboxes with multi-

ple dimensions. When parallelizable modules are encountered, the combination

of blackboxes that yields the minimal length subject to the width constraint is

chosen. Algorithm 6 shows the pseudo-code for coarse-grained scheduling with

�exible blackbox dimensions.

In a k-resource constrained schedule, the width for any invoked module is at

most k. Any operations (other than invoked modules) encountered by the coarse-

grained scheduler have an operation execution cost of 1 and a movement cost of

4.

32

Chapter 3. Methods

3.5 Algorithm Optimizations

For the purposes of rapid early development the algorithms were initially writ-

ten in Perl, while intending to eventually port the more developed algorithms

back into the Sca�CC LLVM �ow in C++. Due to time constraints and con-

tinued modi�cations to the basic code, the Perl code was never ported to C++.

This became a challenge in terms of the overall runtime, with some medium-sized

algorithm con�gurations taking upwards of 16 hours to run. This was obviously

impractical for the number of test cases that needed to be run. Several modi�-

cations were made using various techniques and tools to speed up the run time.

These optimizations are discussed in this section.

The longest path �nding algorithm for LPFS was extremely slow because of

repeatedly searching and heavy memory usage. An early version of this algorithm

started at the top of the DAG (or an intermediate ready list) and would descend

to each node's child and would iterate through the tree that way. This resulted

in a huge recursive fanout for each next step, recalculating and following the

children, often repeatedly. This was not obvious from inspection in the code so a

Perl pro�ler, NYTProf [34], was used to isolate the highest frequency code blocks.

Initially, the getNextLongestPath() subroutine was taking obviously the largest

amount of time. The �rst �x was to reduce the calls to it by setting a �ag to

33

Chapter 3. Methods

prevent calling it once it was unable to �nd anymore paths. This helped, but only

minimally. The pro�ler indicated that a subroutine call to ::max(), which returns

the maximum value in an array, was taking the most time in getNextLongestPath()

so this was turned into a local comparison between the two variables being checked,

which saved about 2 seconds out of an 11 second runtime on a short scheduling

problem, or about 18%.

All of those updates were small, incremental improvements. At this point the

pro�ler was abandoned for more direct inspection of the actual data �ow through

getNextLongestPath(). A few debugging variables were added to count the num-

ber of nodes and their children that were analyzed. The surprising result was that

getNextLongestPath() was apparently exploring O(n2) nodes. The realization was

that as node's children were analyzed, they were added to the next iteration list.

While they were added uniquely, any fanout would double the number of paths

followed by this list. It was apparent that a single pass of all of the nodes should

be su�cient. In order to prevent corruption of the depth calculation it was only

necessary to ensure that all parents were scanned before their children. When new

operation nodes are created, they are automatically scheduled in ASAP order to

determine critical path and maximum potential parallelism width. By walking

this schedule the children's depth could be computed correctly de�nitively. No

measurements were taken at this time, but runtimes were drastically reduced. An

34

Chapter 3. Methods

additional enhancement was made to simply walk the list of operations for a given

module, avoiding dereferencing the ASAP information; since the graph is built in

operation order, children always come after parents. This was shown to decrease

the system runtime 33% for small workloads.

Returning to the pro�ler, the update_ready() function that was created and

initially shared between LPFS and RCP was inspected. This function would take

the operations that had just been scheduled at the current timestep and would

then determine which children were ready to be scheduled in the next timestep.

After pro�ling it became clear that this was one of the largest contributors to run-

time, though it was initially dismissed as a necessary step. The most challenging

part of this algorithm was ensuring that only one instance of any operation was

in the list. Traditionally this done with an insertion sort technique that runs in

roughly O(n) time when individual elements are being added (as opposed to full

sorting). However, Perl has a native hash data type that uses a key:value pair, so

keys are inherently unique. This was used internally to update_ready(), but by

promoting it to lpfs() many of the individual sorts (O(n log n)) could be turned

into hash accesses (O(1)). The one time that the ready list needs to be accessed

in an ordered fashion is to �nd the next operation to schedule in an unassigned

SIMD region; to ensure that a certain uniformity is seen between runs, this is

chosen as the operation with the lowest ID. This access requires performing a

35

Chapter 3. Methods

search on the keys (the operation IDs) which is a simple integer comparison for

the minimum given the list of keys and is done in exactly n. Due to the reduced

amount of sorting based on object values and the direct access provided by the

hash, the runtime was cut by about 3% on small workloads. In order to prevent

breaking functionality, update_ready() was duplicated speci�cally for LPFS while

RCP was not being used.

The function update_moves(), which calculates the qubit movements between

timesteps, was the next target. This function initially moved qubits out of SIMD

regions that were inactive and would move them back in later with no operations

being performed. Seeing that holding the qubits in the SIMD region during a no-

op should not cause issues, it was determined that this should instead scan back

to the last active timestep for SIMD region and determine if the qubit should now

be moved to memory. This searching was problematic because it incurred heavy

pointer indirection and required iterating back over the tree. A new �eld was

added to the Schedule object to store the names and corresponding SIMD regions

of all active qubits. This was compared with the qubits that had been assigned

to the current timestep. Both of these were then used to calculate which qubits

needed to stay in place (no action), move between SIMD regions, or be fetched

from or stored to memory. This resulted in a 28% speedup for this function.

When coupled with additional enhancements (removing additional calls to ::max(),

36

Chapter 3. Methods

de�ning local variables to prevent pointer indirection) resulted in an additional

11% speed up over a moderate workload.

For all of these optimizations, there were still some workloads that were run-

ning for several hours, sometimes many days. Given the long runtimes and e�orts

to reduce the overall runtimes, the Unix utility �time� would be used to monitor

the regressions. Regressions would frequently be run in parallel on di�erent data

sets since the program is single threaded and greater utility could be derived from

the machine. Surprisingly many long runs would still report relatively small sys-

tem time durations. A �nal solution to this was to simply set the �nice� level of

the regressions to -10, allowing them to run with more aggressive scheduling. This

drastically reduced the overall runtime, several runs that would occasionally take

6 hours would now be cut down to a few minutes. The best guess is that with

higher scheduling priority the memory swapping is reduced in the system; this

could also be exacerbated by running several instances in parallel. After getting

some of the longest runtimes down from 6 hours into the 6-12 minute range, the

need for parallelism was also reduced, further decreasing memory utilization and

virtual memory paging.

37

Chapter 3. Methods

Algorithm 4 The Longest Path First Scheduling algorithm. The l paths are
scheduled to allocated SIMD regions, all other operations go in other regions.
SIMD operation and reallocation are possible with the �SIMD� and �re�ll� options.

Function lpfs(DAG G, list of int simds, int l) : Schedule S is

for i in 0 to l-1 do

// Get longest paths for allocated SIMD regions
simd[i] = getNextLongestPath(G.top);

end

for op in G.top do

// Initialize ready list
if (! op.followed) then

ready.push(op);
end

ready = G.top();
while (! ready.empty() && ! simd.forall().empty()) do

// Schedule each time
for i in 0 to l-1 do

// Schedule allocated SIMD regions
if (refill && simd[i].empty()) then

// Reuse SIMD region if it is out of operations
simd[i] = getNextLongestPath(ready);

end

op = simd[i].pop();
S[time][i].push(op);
if (opportunistic_simd) then

// Schedule ready operations of the same type
S[time][i].push(ready.getAllOps(op.op_type));

end

end

for i in l to k-1 do

// Schedule unallocated SIMD regions
optype = ready.top().op_type;
S[time][i].push(ready.getAllOps(op.op_type));

end

for op in S[time].forall().getAllOps() do
// Update ready list
ready.push(op.getReadyChildren());

end

ready.uniq();
time++;

end

return S;
end

38

Chapter 3. Methods

Algorithm 5 Get Next Longest Path algorithm. This function takes a list of
ready operations and walks their children until they reach the end of the module
and �nds the one with the longest distance. The longest distance is backtraced
until it reaches the start, recording each operation in the path and returning the
path. Each operation is marked as followed so subsequent calls can avoid taken
paths.

Function getNextLongestPath(list of Op ready) : list of Op is
Op path[];
Op last = ready.top();
// Reset distances of all untaken paths
for op in ready do

if (! op.followed) then
op.dist = 1;

end

end

// Search thru schedule for longest path
start_level = MAX_INT;
for op in ready do

for child in op.children do

if (! child.followed) then
child.dist = max(child.dist, op.dist + 1);

end

if (child.dist > last.dist) then
last = child;

end

end

end

// Backtrace path
path.push0(last);
while (path[0].dist > 1) do

for parent in path[0].parents do
if (parent.dist == path[0].dist-1) then

path.push0(parent);
parent.followed = 1;
break;

end

end

end

return path;
end

39

Chapter 3. Methods

Algorithm 6 Hierarchical scheduling algorithm for k SIMD regions. Operations
are scheduled in priority order similar to list scheduling. Flexible blackbox di-
mensions are considered for parallelizable modules to �nd the best combination
for them.
for each non-�at module do

//Track schedule in terms of blackbox dimensions
totalL = 0; totalW = 0; // total length and width
currL = 0; currW = 0; //current length and width
for each operation Fi in a priority-ordered set of operations {F : Priority(Fi) ≥ Priority(Fj) if (i < j)} do

Check predecessors to �nd the earliest timestep te in which Fi can be scheduled
Get width W and length L for Fi

if (te ≤ totalL+ currL) then

// dependencies show that Fi can be parallelized with previous schedule
if (currW +W ≤ K) then

//parallelize the operation Fi

timestep(Fi) = max(totalL+1, te)
currW = currW+W
currL = max(currL, timestep(Fi)+L)
Fp = {Fp,Fi} //Add to set of parallel functions in current schedule

else

//k-constraint would be violated if parallelized
for set of functions {Fp,Fi} do

Try all combinations of possible widths, and compute length.
end

if one or more combinations found with combined width ≤ K then

Choose combination with smallest length.
currW = Width of combination
currL = Length of combination
Fp = {Fp,Fi} //Add to set of parallel functions in current schedule

else

//serialize Fi due to k-constraint
totalW = max(totalW , currW)
totalL = totalL + currL
timestep(Fi) = totalL+1
currW = W ; currL = L
Fp = {Fi} //set of parallel functions in current schedule

end

end

else

// serialize Fi due to data dependency
totalW = max(totalW , currW)
totalL = totalL + currL
timestep(Fi) = totalL+1
currW = W ; currL = L
Fp = {Fi} //set of parallel functions in current schedule

end

end

//merge current box with total box dimensions
totalW = max(totalW , currW)
totalL = totalL + currL
Store totalW and totalL in data structure

end

40

Chapter 4

Results

The primary goals of this work are to determine the architectural costs of quan-

tum benchmark algorithms and how to optimize these benchmarks using di�erent

scheduling algorithms. To that end, eight benchmark algorithms were chosen to

evaluate both the architectural con�gurations and the various scheduling algo-

rithms that have been discussed. Results were generated by evaluating many dif-

ferent con�gurations of the benchmarks, architecture and scheduling algorithms.

By carefully varying the di�erent parameters a comparative understanding of the

di�erent con�gurations are possible.

All benchmarks are run with two problem sizes chosen to demonstrate how the

benchmark scales. The architecture itself has two parameters, Multi-SIMD(k, d),

which control the number (k) and size (d) of the SIMD execution regions. Typi-

cally k is either 2 or 4, given the low amount of parallelism in many benchmarks,

except where otherwise noted. Likewise, most of the data presented here uses a d

41

Chapter 4. Results

value of 1024. The RCP algorithm has three weighting parameters: O, D, and S ;

typically all are set to one (equal weight), but other con�gurations are examined

to see what weighting is most e�ective. The LPFS algorithm requires at least a

single SIMD region to run, so the l parameter was set to 1, except where oth-

erwise noted; additionally, options for opportunistic SIMD scheduling (�SIMD�)

and longest path re�lling (�Re�ll�) were used, except where otherwise noted.

In this section results are presented for the following:

• Runtime speedup of instruction- and data-level parallelism

• Runtime speedup with data movement analysis

� Data-parallelism sensitivity

� RCP con�guration variability

� LPFS con�guration variability

• Communication costs, requirements and limits

� Sustained throughput requirements

� Peak bandwidth limits

42

Chapter 4. Results

4.1 Runtime Speedup of Instruction- and Data-

Level Parallelism

The �rst set of results, in Figure 4.1, show the comparison of the speedups

provided by a Multi-SIMD architecture and the theoretical maximum speedup

along the critical path, looking solely at the instruction and data parallelism

within the benchmarks found by the RCP and LPFS algorithms.

All of the scheduling algorithms except Shor's n=512 were able to achieve

near-theoretical Critical Path speedup at either k = 2 or 4. This is assisted by

using d = 1024, which allows for clustering as many qubits as possible into SIMD

regions. Additionally, RCP speedups are lower than or equal to LPFS in every

benchmark except TFP n=5 at k = 2.

Shor's algorithm shows a greater sensitivity to the number of SIMD regions

available k. The parallelism of Shor's algorithm with higher k is shown in Fig-

ure 4.2. The reason for this can be traced to the large number of rotation opera-

tions that exists in this code. These rotation operations can theoretically execute

at the same time because they are on distinct qubits, except for the fact that

practically they need to be decomposed into primitive, standard operations (as

described in 2.4). This can prohibit the parallelization of operations unless more

SIMD regions are created to accommodate them, as illustrated in Table. 4.1. Since

43

Chapter 4. Results

0123456789

1
0

1
1

x=
2

,y
=

2
x=

3
,y

=
2

n
=1

0
0

,s
=

1
0

0
0

n
=3

0
0

,s
=

3
0

0
0

p
=6

p
=8

n
=3

0
n

=4
0

m
=1

0
m

=3
0

n
=1

2
8

n
=4

4
8

 (
3

M
)

n
=4

n
=5

1
2

n
=5

n
=1

0

B
F

B
W

T
C

N
G

ro
ve

rs
G

SE
SH

A
1

Sh
o

rs
TF

P

Sp
e

e
d

u
p

 W
it

h
o

u
t

C
o

m
m

u
n

ic
at

io
n

 C
o

st
s

R
C

P
 K

=2

R
C

P
 K

=4

LP
FS

 K
=2

LP
FS

 K
=4

C
ri

ti
ca

l P
at

h

Figure 4.1: The speedup over sequential execution of each benchmark with each
scheduling algorithm, compared to the estimated critical path. Almost all algo-
rithms, except Shor's, achieve near-complete speedup by k = 4.

44

Chapter 4. Results

0	

2	

4	

6	

8	

10	

12	

K	
 =	
 8	
 K	
 =	
 16	
 K	
 =	
 24	
 K	
 =	
 32	
 K	
 =	
 128	
 K	
 =	
 8	
 K	
 =	
 16	
 K	
 =	
 24	
 K	
 =	
 32	
 K	
 =	
 128	

rcp	
 lpfs	
 cp	

Shors	
 n=512	

Sp
ee
du

p	

W
ith

ou
t	
 M

ov
em

en
t	
 O

ve
r	
 S

eq
ue

n3
al
	
 E
xe
cu
3o

n	

Figure 4.2: Shor's algorithm speedups as scheduled with a communication-aware
scheduler on a Multi-SIMD architecture with local memories. High numbers of
rotations cause long serial threads of operations to each execute on a separate
SIMD region, thus getting better gains with higher k.

45

Chapter 4. Results

many of these rotations were not inlined into the code, to keep the size manage-

able, they remain as blackboxes in the course-grained schedule. That causes the

scheduler to allocate a separate region to each, e�ectively increasing the need for

these regions. Improved hierarchical scheduling would make better use of the d

parallelism.

TFP's improved RCP performance is also because of coarse-grained scheduling.

LPFS requires l SIMD regions to be used for the longest l paths, so all leaf

schedules are force to have a width of k = 2; RCP allows for k = 1 widths. Since

the TFP algorithm also has several rotation decompositions that only operate

on a single qubit, more of these rotations can be scheduled in parallel using the

coarse-grained, �exible boundary scheduler with RCP resulting in a shorter overall

runtime.

Rotation Operation Primitive Operations Approximating Rotations

Rz(q1, θ1) T (q1) � S
†(q1) � H(q1) � Z(q1) � ...

Rz(q2, θ2) H(q2) � Y (q2) � X(q2) � H(q2) � ...
... ...
Rz(qn, θn) S(qn) � X(qn) � T (qn) � T

†(qn) � ...

Table 4.1: Parallel rotations cannot be executed simultaneously on a hardware
with primitive operations, unless there are enough SIMD regions to accommodate
them.

46

Chapter 4. Results

4.2 Runtime Speedup with Data Movement Anal-

ysis

Figure 4.3 shows all scheduling algorithm speedups over a naive movement

model where data is moved between SIMD regions and global memory every

timestep, e�ectively increasing the overall runtime by 5X (1 timestep for the oper-

ation, 4 timesteps for the communication). All algorithms show some speedup over

communication-unaware runtime models due to reduced movement. The critical

path was not used for a theoretical bound in these or the next results because no

suitable critical path model for incorporating movement was found. An average

increase in speedup of 57% is seen across all algorithms. The largest gains are

seen in GSE (307%) and Shor's (209%).

Some algorithms, such as BF, CN, Grovers, and SHA-1, all have a large number

of highly dependent, serial operations. BF, CN and SHA-1 are composed of several

CTQG modules, which produces unoptimized code that is highly locally serialized.

This results in benchmarks that have a low degree of parallelism and aren't well

optimized. The interactions between data dependencies also result in many small

(1-2 qubit) moves between global memory and various SIMD regions that can't

be skipped to improve performance.

47

Chapter 4. Results

0123456789

1
0

1
1

x=
2

,y
=

2
x=

3
,y

=
2

n
=1

0
0

,s
=

1
0

0
0

n
=3

0
0

,s
=

3
0

0
0

p
=6

p
=8

n
=3

0
n

=4
0

m
=1

0
m

=3
0

n
=1

2
8

n
=4

4
8

 (
3

M
)

n
=4

n
=5

1
2

n
=5

n
=1

0

B
F

B
W

T
C

N
G

ro
ve

rs
G

SE
SH

A
1

Sh
o

rs
TF

P

Sp
e

e
d

u
p

 W
it

h
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

s

R
C

P
 K

=2

R
C

P
 K

=4

LP
FS

 K
=2

LP
FS

 K
=4

Figure 4.3: The speedups using a communication-aware scheduler over a sequen-
tial, naive movement model. All benchmarks show improvement over Fig. 4.1,
with GSE and Shor's showing the largest gains.

48

Chapter 4. Results

GSE shows the largest gains due to its distinctive structure. Two key qubit

registers containing the primary active qubits are rarely moved out of an SIMD

region once they are in place and typically have long sequences of operations on

the same qubits. This results in very few moves either between SIMD regions or

memory.

Shor's algorithm also consists of fairly serial modules derived from CTQG and

lots of rotations which need to be decomposed, which results in a large number

of moves being removed from those modules. However, it is likely that with

greater data parallelism (by not blackboxing the sub-modules or through further

�attening), the speedup could increase while communication increases because the

e�ciency of the schedule would be higher.

4.2.1 Data-parallelism Sensitivity

Though d is constrained to 1024 for the majority of the results presented, a

subset of benchmarks with d scaling is shown in Figure 4.4. GSE was chosen

because of its structure and has a high degree of data parallelism. Here, ∞ is

simply su�ciently high to allow the maximum data width, or around 64K. SHA-1

and Shor's algorithms are both heavily data parallel algorithms traditionally, so

they were also chosen to demonstrate the extent of d scaling. As shown in the

extreme case of d = 2, SHA-1's high data-parallelism is signi�cantly impacted by

49

Chapter 4. Results

the reduction, but the much more task parallel Shor's is not; GSE takes a moderate

hit, indicating that while it is reliant on data-parallelism, the movement factor

is much more important. The overall speedup between d = 128 and ∞ is rarely

signi�cant. As there is little gained beyond a certain level of data parallelism, it

is largely omitted from analysis here.

4.2.2 RCP Con�guration Variability

Figure 4.5 shows the speedups of RCP at k = 2 and 4 with di�erent param-

eter con�gurations. RCP has three con�gurable parameters: O is the weight for

operation type, D is the weight for move distance, and S is a negative weighting

for graph distance until the operation is needed. RCP, as a traditional scheduling

algorithm, is meant for tasks of varying length and full threads of execution. The

�ne-grained scheduling used in this architecture is not a good �t for RCP as much

of the operational parallelism is subsumed by the data parallelism of the SIMD

execution model. Since each SIMD region can only do a single operation, the

algorithm will �nd the highest priority operation, then schedule that all of the

operations of that type into the that region (in priority order). This undercuts

the utility of the distance metric and the slack metric.

Most of the variation is seen in SHA-1 k = 2, where prioritizing for distance

actually reduces the e�ectiveness of the algorithm, but slack improves it slightly.

50

Chapter 4. Results

Unfortunately, this seems to be a limited case, with the di�erence disappearing

by k = 4.

4.2.3 LPFS Con�guration Variability

Figure 4.6 shows the speedups of LPFS at k = 2 and 4 with di�erent param-

eter con�gurations. LPFS has three con�gurable parameters: l is the number of

longest paths to schedule, SIMD controls whether SIMD operation is used, and

Re�ll which allows completed paths to have a new path scheduled in the newly

freed SIMD region. The Re�ll option (only usable with SIMD) has no appreciable

e�ect on the speedup. Reusing a SIMD region after completing a path is rarely

needed; most modules don't have many second and third longest paths that are

signi�cantly shorter than the longest path and the new longest path may intro-

duce stalls because dependencies aren't met yet. SIMD typically has a moderate

impact on the overall runtime, the only exception being in GSE, where non-SIMD

can be better. This is likely due to the register-based structure which performs

longer sequences of operations on the same qubits, reducing the amount of com-

munication incurred signi�cantly when SIMD is not used. There may also be some

artifacts in the free-list handling of LPFS that assist with GSE schedules.

TFP's outlier at k = 4, l = 1 is predominantly due to the �exible boundary

scheduling. Since l + 1 is the minimum size of any LPFS scheduled module,

51

Chapter 4. Results

�exible boundaries only work at this node, because all leaves will require 2-4 SIMD

regions. At l > 1, the widths increase to a minimum of 3, so no coarse-grained

parallelism can be attained at k = 4. Revising LPFS to allow for a minimum

width based on actual usage, instead of l + 1 should help with coarse-grained

scheduling.

4.3 Communication Costs, Requirements and Lim-

its

Communication is interesting in quantum computing because the actual trans-

mission of the quantum state is functionally instantaneous (at least 10,000 times

faster than the speed of light [66]), so the actual bandwidth is limited solely by

the overhead of preparing the EPR pairs, transmitting one half of the pair to

the destination, transmission of classical state information, and performing the

measurement and reconstruction operations. This allows a functional maximum

bandwidth for the system of however many measurement operations (less than or

equal to k times d times 2, assuming full-duplex) can be performed in a single

timestep. The overhead costs are expensive, though, requiring four timesteps for

each movement phase and physical bandwidth to transmit the EPR pairs between

their source and destination SIMD regions and memory.

52

Chapter 4. Results

In order to investigate further realism in the simulation of the Multi-SIMD

architecture, the system-wide communication costs were measured as well. The

movements within the system were tracked on a qubit and a cycle-by-cycle basis in

order to determine the sustained throughput and peak bandwidth of the system.

These metrics allow for reasoning about the system-level needs for provisioning

inter-region EPR bandwidth and teleportation overhead calculations.

4.3.1 Sustained Throughput Requirements

Sustained throughput shown in Figure 4.7 is the average number of qubits

moved in a single cycle over the entire runtime of the benchmark, including

timesteps involved in performing movements (since throughput is de�ned as in-

cluding overhead costs). SHA-1 has the highest requirement of an average of

around 2.6 qubits moved at every timestep, due to the high amount of data par-

allelism in the algorithm as well as the nature of block-base hashing algorithms.

Most other algorithms average less than one qubit per cycle, though this is realis-

tically higher when only considering computation timesteps that are not involved

in performing movement. GSE is particularly low, but this is explained by the

large speedup seen between Figures 4.1 and 4.3 when movement was considered.

These results give a minimum value for an EPR pair generation rate that must sus-

tained throughout the execution of the benchmark. Dropping below this level will

53

Chapter 4. Results

cause throttling of the system to deal with insu�cient communication, resulting

in longer runtimes.

Though communication shows an increase with k, this is expected as more

resources are available and does not appreciably increase for additional SIMD

regions.

4.3.2 Peak Bandwidth Limits

The peak bandwidth in Figure 4.8 is plotted against a log scale due to the

wide variation of peaks between algorithms. Most benchmarks show a peak level

that doesn't vary between algorithms or con�gurations; this is largely due to

the nature of both the hierarchical scheduling model and the maximum data

width of the benchmark, typically dictated by the problem size. To allow for

hierarchical blackbox scheduling, the compiler assumes that all of the active qubits

will be �ushed to the global memory and the module will start retrieving all of

the qubits it needs directly from memory. This approach is obviously ine�cient

and will be corrected in future versions of the compiler. The maximum data

width of the benchmark refers to the typically width passed by either a critical

module or by most of the modules and typically related to the problem size.

Grover's algorithm is dominated by initialize and measure modules which act

on all non-ancilla qubits in the algorithm, even though most modules only pass

54

Chapter 4. Results

a few qubits at a time; pipelining or serializing Grover's in these modules can

dramatically reduce the peak bandwidth load. GSE's register based approach has

the contents of two registers passed to almost every module; in this case, moves

may be further eliminated as the active qubits were the same in both contexts.

SHA-1 shows increases in each algorithm, showing that as the amount of available

data parallelism is increased, the algorithm can be scaled with it, implying that

the benchmark has data parallelism to spare, even with up to 4096 qubits worth

of processing (with k = 4, d = 1024). SHA-1 will only continue to increase as k

does.

Currently the architecture assumes an in�nite capacity to generate and store

EPRs, but the communication costs shown here de�nitely will force realistic solu-

tions to the outrageous number of EPR pairs that need to be managed. Strategies

may include reusing disentangled EPR qubits, bu�ering, or even throttling exe-

cution to allow for underruns in the EPR pair resources.

55

Chapter 4. Results

0	

1	

2	

3	

4	

5	

6	

7	

8	

2	
 128	
 256	
 512	
 1024	
 2	
 128	
 256	
 512	
 1024	
 2	
 128	
 256	
 512	
 ∞	
 2	
 128	
 256	
 512	
 ∞	
 2	
 128	
 256	
 512	
 1024	
 2	
 128	
 256	
 512	
 1024	

RCP	
 LPFS	
 RCP	
 LPFS	
 RCP	
 LPFS	

GSE	
 m=10	
 SHA1	
 n=448	
 (3M)	
 Shors	
 n=512	

Sp
ee
du

p	

O
ve
r	
 N

ai
ve
	
 M

ov
em

en
t	
 S

ch
ed

ul
in
g	

Quantum	
 Algorithm	

Figure 4.4: The speedup of GSE, SHA-1, and Shor's algorithm with respect to d,
including communication.

56

Chapter 4. Results

012345678

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

x=
2

,y
=

2
n

=1
0

0
,s

=
1

0
0

0
p

=6
n

=3
0

m
=1

0
n

=1
2

8
n

=4
n

=5

B
F

B
W

T
C

N
G

ro
ve

rs
G

SE
SH

A
1

Sh
o

rs
TF

P

R
C

P
 C

o
n

fi
gr

at
io

n
 O

p
ti

o
n

s

O
=

1
, D

=1
, S

=
1

O
=1

, D
=1

, S
=

1
0

O
=1

, D
=1

0
, S

=1

O
=1

0
, D

=
1

, S
=1

Figure 4.5: Speedups with movement costs, varying the RCP options. The weights
for scheduling priority are based on Operation type (O), Distance (D), and Slack
(S). Little variation is seen.

57

Chapter 4. Results

012345678

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

L=
1

L=
1

L=
2

L=
3

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

K
=

2
K

=
4

x=
2

,y
=

2
n

=1
0

0
,s

=
1

0
0

0
p

=6
n

=3
0

m
=1

0
n

=1
2

8
n

=4
n

=5

B
F

B
W

T
C

N
G

ro
ve

rs
G

SE
SH

A
1

Sh
o

rs
TF

P

LP
FS

 C
o

n
fi

gu
ra

ti
o

n
 O

p
ti

o
n

s

N
o

 S
IM

D

SI
M

D

SI
M

D
, R

ef
ill

Figure 4.6: Speedups with movement costs, varying the LPFS options. Options
include l, SIMD and re�ll. Typically l = 1 is preferred, as is SIMD operation,
though GSE has an odd outlier for non-SIMD.

58

Chapter 4. Results

0

0.5

1

1.5

2

2.5

3

x=2,y=2 x=3,y=2 n=100,s=1000 n=300,s=3000 p=6 p=8 n=30 n=40 m=10 m=30 n=128 n=448 (3M) n=4

BF BWT CN Grovers GSE SHA1 Shors

SustainedThroughput

RCP K=2

RCP K=4

LPFS K=2

LPFS K=4

Figure 4.7: The average throughput of the benchmark over its execution, in qubits
per cycle. Teleportation overhead cycles are included in the total runtime. This
gives a minimum communication cost need to sustain operation.

1

10

100

1000

10000

x=2,y=2 x=3,y=2 n=100,s=1000 n=300,s=3000 p=6 p=8 n=30 n=40 m=10 m=30 n=128 n=448 (3M) n=4

BF BWT CN Grovers GSE SHA1 Shors

Peak Bandwidth

RCP K=2

RCP K=4

LPFS K=2

LPFS K=4

Figure 4.8: The peak bandwidth (or most moves seen in a single cycle) of a
benchmark. This gives an upper bound for ideal scheduling of benchmarks.

59

Chapter 5

Related Work

This work signi�cantly based on work in [22, 26]. Some of the work is present

both here and in these papers. The following statements are taken from [22].

This work builds on several important previous studies relating to SIMD paral-

lelism [8, 29, 49], ancilla preparation [24, 28], and quantum architecture [8, 39, 58].

This work is the second to use a complete compiler infrastructure to discover this

parallelism, allowing evaluation of a non-trivial set of benchmarks (previous work

focused almost exclusively on Shor's and Grover's algorithm, or other small quan-

tum circuits). It is also the second to incorporate data movement analysis and

optimizations within the compiler framework established. Additionally, it focuses

more completely on the scheduling algorithms used to determine runtime.

Parallel work has been done by the Quipper team [18]. They have devel-

oped a very similar system based on Haskell which explores compiliation, circuit

generation, and execution of quantum circuits. They were a part of the IARPA

60

Chapter 5. Related Work

funded research that started this project at UCSB. Their work was conducted in-

dependently of this work, but I have been present for some of their presentations

and have discussed technical details of one of the algorithms (Quantum Linear

Systems, non-functional in this work) with them.

Some prior work has explored optimization of execution latencies with SIMD

architectures, but in a more limited context. Chi et.al. [8] proposed a SIMD archi-

tecture based on the technology of electron spins on liquid helium. For a quantum

carry-lookahead adder circuit, they evaluated pipelining of ancilla preparation for

CNOT and To�oli gates to reduce latency, and optimization of width of SIMD

regions to reduce area requirements. This work builds on this model, with the

implementation of a complete compiler and the study of a much larger and more

diverse benchmark suite.

Schuchman et.al. [49] identify a high-level parallelism pertaining to speci�c

quantum tasks of uncomputation (analogous to garbage collection for qubits) and

propose a multi-core architecture to minimize latency and expensive inter-core

communication during their execution. This kind of parallelism �ts well into the

Multi-SIMD model; it can be easily extended to support the proposed multiple

cores. Some degree of uncomputation already exists in the compiled code of the

benchmarks and is naturally parallelized by the model, and more can be added in

the future to reclaim unused qubits.

61

Chapter 5. Related Work

The SIMD regions in the architecture are well-suited for a commonly used

class of error-correction codes known as concatenated codes [2, 53]. A new class

of ensemble codes, known as surface codes [23], have the potential of lowering

ECC overhead for very large problems. Future research will explore whether

surface code operations are amenable to SIMD parallelism.

62

Chapter 6

Future Work

There is much more work to be done in this vein of research. The �rst steps

are merging LPFS into the Sca�CC/LLVM framework. By doing this, it can

be promoted to a full program scheduler, not merely for leaf nodes. Addition-

ally, LPFS has some limitations in the prioritization of its free list, which can be

improved. Enabling LPFS to perform some hierarchical scheduling as well will

improve scheduling in non-leaf modules, which currently use ine�cient blackbox-

ing. These changes should impact both the actual schedules produced as well as

the overall runtime and memory of the scheduling algorithms.

The algorithms themselves may be re-written in more parallel-friendly ways,

either by introducing redundant computation that can be merged probabilistically

or by restructuring the algorithm to decrease data dependencies.

63

Chapter 6. Future Work

This work draws heavily from [22], which also discusses a local memory opti-

mization that can be used to reduce teleportation costs. By continuing to push

these analyses into Sca�CC, the toolchain becomes more robust and useful.

Future analysis work includes re�ning tracking of communication costs by

accurately modeling qubit movements at module boundaries. While this is likely

a minimal change to throughput, it may reduce the peak bandwidth usage to

something that is more practically achievable. Additional experimentation can

be done by scaling d to limit available bandwidth based on modeling of EPR

generation and distribution, as well as looking at multi-hop (all communication

through global memory) instead of fully-connected, single-hop transmission as

explored here.

Finally, incorporating QECC costs for both qubits and computation and an-

cilla preparation will allow for complete end-to-end scheduling of the benchmark

algorithms.

64

Chapter 7

Conclusion

The Multi-SIMD architecture proposed here allows for reasoning about the

practical physical constraints of a quantum computer. By using the Sca�CC

toolchain to build gate-level programs that are highly scalable, the computational

time as well as the data communication within the system can be analyzed. Com-

putation is shown to be dominated by the 80% communication overhead. By

limiting the movement within the system coupled with the parallelism in the ar-

chitecture, speedups of between 1.6X and 7.9X over naive movement models are

seen. These results are based on logical-level operations, and the incorporation

of quantum error correction (QECC) can result in exponential overhead costs

[2, 44, 53]. By providing even limited speedup, the computations may be able

to avoid using increasing levels of QECC and signi�cantly reduce the runtime

further.

65

Chapter 7. Conclusion

The architectural costs of generating up to 2.5 qubits per cycle on average and

managing qubit bu�ers of 2∗kd EPR pairs for communication will require a large

technical e�ort to achieve. More satisifactory architectural trade-o�s will need to

be found in order to create a more viable quantum computer model.

66

Bibliography

[1] D-wave systems, March 2014.

[2] Panos Aliferis and Andrew Cross. Subsystem fault tolerance with the bacon-

shor code. arXiv preprint quant-ph/0610063, 2006.

[3] D. T. C. Allcock, T. P. Harty, C. J. Ballance, B. C. Keitch, N. M. Linke,

D. N. Stacey, and D. M. Lucas. A microfabricated ion trap with integrated

microwave circuitry. Applied Physics Letters, 102(4):�, 2013.

[4] Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Spalek, and

Shengyu Zhang. Any AND-OR Formula of Size N Can Be Evaluated in Time

N1/2+O(1) on a Quantum Computer. In Proceedings of the 48th Annual IEEE

Symposium on Foundations of Computer Science, FOCS '07, pages 363�372,

Washington, DC, USA, 2007. IEEE Computer Society.

[5] John Bell. Speakable and unspeakable in quantum mechanics. The Press

Syndicate of the University of Cambridge, 1987.

67

Bibliography

[6] BB Blinov, DL Moehring, L-M Duan, and Chris Monroe. Observation of

entanglement between a single trapped atom and a single photon. Nature,

428(6979):153�157, 2004.

[7] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill,

D. Leibfried, and D. J. Wineland. Single-qubit-gate error below 10−4 in a

trapped ion. Phys. Rev. A, 84:030303, Sep 2011.

[8] Eric Chi, Stephen A. Lyon, and Margaret Martonosi. Tailoring quantum

architectures to implementation style: a quantum computer for mobile and

persistent qubits. In Proceedings of the 34th annual international symposium

on Computer architecture, ISCA '07, pages 198�209, New York, NY, USA,

2007. ACM.

[9] J Chiaverini, D Leibfried, T Schaetz, MD Barrett, RB Blakestad, J Brit-

ton, WM Itano, JD Jost, E Knill, C Langer, R Ozeri, and D. J. Wineland.

Realization of quantum error correction. Nature, 432(7017):602�605, 2004.

[10] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gut-

mann, and Daniel A. Spielman. Exponential algorithmic speedup by a quan-

tum walk. In Proceedings of the thirty-�fth annual ACM symposium on The-

ory of computing, STOC '03, pages 59�68, New York, NY, USA, 2003. ACM.

68

Bibliography

[11] Diana P. L. Aude Craik, N. M. Linke, T. P. Harty, C. J. Ballance, D. M.

Lucas, A. M. Steane, and D. T. C. Allcock. Microwave control electrodes

for scalable, parallel, single-qubit operations in a surface-electrode ion trap,

August 2013.

[12] Steven A Cuccaro et al. A New Quantum Ripple-Carry Addition Circuit.

arXiv preprint quant-ph/0410184, 2004.

[13] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algo-

rithm. Quantum Info. Comput., 2006.

[14] David P DiVincenzo. The physical implementation of quantum computation.

arXiv preprint quant-ph/0002077, 2000.

[15] Artur Ekert and Richard Jozsa. Quantum computation and shor's factoring

algorithm. Rev. Mod. Phys., 68:733�753, Jul 1996.

[16] JJ Garc�a-Ripoll, P Zoller, and JI Cirac. Speed optimized two-qubit gates

with laser coherent control techniques for ion trap quantum computing. Phys.

Rev. Lett, 91(15):157901, 2003.

[17] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Je� Diamond, Paul

Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith,

James Burrill, Stephen W. Keckler, Doug Burger, and Kathryn S. McKinley.

69

Bibliography

An evaluation of the TRIPS computer system. In In Proceedings of the Four-

teenth International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, March 2009.

[18] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger,

and Benoît Valiron. Quipper: a scalable quantum programming language.

SIGPLAN Not., 48(6):333�342, June 2013.

[19] Lov K. Grover. A fast quantum mechanical algorithm for database search.

In Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, STOC '96, pages 212�219, New York, NY, USA, 1996. ACM.

[20] Sean Hallgren. Fast Quantum Algorithms for Computing the Unit Group

and Class Group of a Number Field. In Symposium on Theory of Computing.

ACM, 2005.

[21] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm

for Linear Systems of Equations. Physical Review Letters, 103(15):150502,

2009.

[22] Je� Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow,

Frederic T. Chong, Margaret Martonosi, Ken Brown, and Diana Franklin.

[submitted] compiler management of communication and parallelism for

quantum computation. ASPLOS 2015, 2014.

70

Bibliography

[23] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter.

Surface code quantum computing by lattice surgery. New Journal of Physics,

14(12):123011, 2012.

[24] Nemanja Isailovic, Mark Whitney, Yatish Patel, and John Kubiatowicz. Run-

ning a quantum circuit at the speed of data. In ACM SIGARCH Computer

Architecture News. IEEE Computer Society, 2008.

[25] Ali JavadiAbhari et al. Sca�old: Quantum Programming Language. Techni-

cal report, Princeton University, NJ, USA, 2012.

[26] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Je� Heckey, Alexey Lvov,

Frederic T Chong, and Margaret Martonosi. Sca�cc: A Framework for Com-

pilation and Analysis of Quantum Computing Programs. ACM International

Conference on Computing Frontiers (CF 2014), 2014.

[27] M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, and Chr.

Wunderlich. Individual addressing of trapped ions and coupling of motional

and spin states using rf radiation. Phys. Rev. Lett., 102:073004, Feb 2009.

[28] N Cody Jones, Rodney Van Meter, Austin G Fowler, Peter L McMahon,

Jungsang Kim, Thaddeus D Ladd, and Yoshihisa Yamamoto. Layered archi-

tecture for quantum computing. Physical Review X, 2(3):031007, 2012.

71

Bibliography

[29] J Kim, S Pau, Z Ma, HR McLellan, JV Gates, A Kornblit, Richard E Slusher,

Robert M Jopson, I Kang, and M Dinu. System design for large-scale ion trap

quantum information processor. Quantum Information & Computation,

5(7):515�537, 2005.

[30] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Practical Approx-

imation of Single-Qubit Unitaries by Single-Qubit Quantum Cli�ord and T

Circuits. arXiv preprint arXiv:1212.6964, 2012.

[31] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically

Optimal Approximation of Single Qubit Unitaries by Cli�ord and T Cir-

cuits Using a Constant Number of Ancillary Qubits. Physical review letters,

110(19):190502, 2013.

[32] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and E�cient

Exact Synthesis of Single-Qubit Unitaries Generated by Cli�ord and T Gates.

Quantum Information & Computation, 13(7-8):607�630, 2013.

[33] Daniel Kudrow et al. Quantum Rotations: A Case Study in Static and Dy-

namic Machine-Code Generation for Quantum Computers. In International

Symposium on Computer Architecture. ACM, 2013.

[34] Leo Lapworth. Perl pro�ling with devel::nytprof (the perl pro�ler).

72

Bibliography

[35] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Code Generation and Optimization,

2004.

[36] Dietrich Leibfried, Brian DeMarco, Volker Meyer, David Lucas, Murray

Barrett, Joe Britton, B Jelenkovi&cacute WM Itano, C Langer, and

DJ T Rosenband. Experimental demonstration of a robust, high-�delity ge-

ometric two ion-qubit phase gate. Nature, 422(6930):412�415, 2003.

[37] Daniel Loss and David P DiVincenzo. Quantum computation with quantum

dots. Physical Review A, 57(1):120, 1998.

[38] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms

for the triangle problem. In Proceedings of the sixteenth annual ACM-SIAM

symposium on Discrete algorithms, SODA '05, pages 1109�1117, Philadel-

phia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

[39] Tzvetan S. Metodi, Darshan D. Thaker, and Andrew W. Cross. A quan-

tum logic array microarchitecture: Scalable quantum data movement and

computation. In MICRO, pages 305�318. IEEE Computer Society, 2005.

[40] Chris Monroe, DMMeekhof, BE King, WM Itano, and DJWineland. Demon-

stration of a fundamental quantum logic gate. Physical Review Letters,

75(25):4714, 1995.

73

Bibliography

[41] Michele Mosca. Quantum algorithms. In Robert A. Meyers, editor, Ency-

clopedia of Complexity and Systems Science, pages 7088�7118. Springer New

York, 2009.

[42] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2010.

[43] National Institute of Standards and Technology. FIPS PUB 180-4: Secure

Hash Standard (SHS). U.S. Department of Commerce, 2012.

[44] M. Oskin, F.T. Chong, and I.L. Chuang. A Practical Architecture for Reliable

Quantum Computers. Computer, 35(1):79�87, 2002.

[45] C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini,

D. Leibfried, and D. J. Wineland. Microwave quantum logic gates for trapped

ions. Nature, 476:181�184, 2011.

[46] Archimedes Pavlidis and Dimitris Gizopoulos. Fast Quantum Modular Ex-

ponentiation Architecture for Shor's Factoring Algorithm. Quantum Infor-

mation and Computation, 14:0649�0682, 2014.

[47] Mark Riebe, H Hä�ner, CF Roos, W Hänsel, J Benhelm, GPT Lancaster,

TW Körber, C Becher, F Schmidt-Kaler, and DFV James. Deterministic

quantum teleportation with atoms. Nature, 429(6993):734�737, 2004.

74

Bibliography

[48] Ferdinand Schmidt-Kaler, Hartmut Hä�ner, Mark Riebe, Stephan Gulde,

Gavin PT Lancaster, Thomas Deuschle, Christoph Becher, Christian F Roos,

Jürgen Eschner, and Rainer Blatt. Realization of the cirac�zoller controlled-

not quantum gate. Nature, 422(6930):408�411, 2003.

[49] Ethan Schuchman and T. N. Vijaykumar. A Program Transformation and

Architecture Support for Quantum Uncomputation. In Architectural Support

for Programming Languages and Operating Systems. ACM, 2006.

[50] C. M. Shappert, J. T. Merrill, K. R. Brown, J. M. Amini, C. Volin, S. C.

Doret, H. Hayden, C-S. Pai, and A. W. Harter. Spatially uniform single-qubit

gate operations with near-�eld microwaves and composite pulse compensa-

tion. New Journal of Physics, 15(083053), 2013.

[51] Peter W Shor. Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In Foundations of Computer Science, 1994 Proceedings., 35th

Annual Symposium on, pages 124�134. IEEE, 1994.

[52] Sqct: Single Qubit Circuit Toolkit - https://code.google.com/p/sqct/, May

2014.

[53] A. Steane. Error correcting codes in quantum theory. Physical Review Letters,

77(5):793�797, 1996.

75

Bibliography

[54] A. M. Steane. Active stabilization, quantum computation, and quantum state

synthesis. Phys. Rev. Lett., 78:2252�2255, Mar 1997.

[55] Andrew Steane. Multiple-Particle Interference and Quantum Error Correc-

tion. Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, 452(1954):2551�2577, 1996.

[56] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, An-

drew Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. The

WaveScalar architecture. ACM Trans. Comput. Syst., 25(2):4:1�4:54, May

2007.

[57] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzla�, Ian

Bratt, Ben Greenwald, Henry Ho�mann, Paul Johnson, Jason Kim, James

Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank,

Saman Amarasinghe, and Anant Agarwal. Evaluation of the raw microproces-

sor: An exposed-wire-delay architecture for ilp and streams. In Proceedings of

the 31st Annual International Symposium on Computer Architecture, ISCA

'04, pages 2�. IEEE Computer Society, 2004.

[58] Darshan D. Thaker, Tzvetan S. Metodi, Andrew W. Cross, Isaac L. Chuang,

and Frederic T. Chong. Quantum memory hierarchies: E�cient designs to

76

Bibliography

match available parallelism in quantum computing. In ISCA, pages 378�390.

IEEE Computer Society, 2006.

[59] U. Warring, C. Ospelkaus, Y. Colombe, K. R. Brown, J. M. Amini,

M. Carsjens, D. Leibfried, and D. J. Wineland. Techniques for microwave

near-�eld quantum control of trapped ions. Phys. Rev. A, 87:013437, Jan

2013.

[60] James D. Whit�eld, Jacob Biamonte, and Alan Aspuru-Guzik. Simulation

of electronic structure hamiltonians using quantum computers. Molecular

Physics, 109(5):735, 2010.

[61] Mark G. Whitney, Nemanja Isailovic, Yatish Patel, and John Kubiatowicz.

A fault tolerant, area e�cient architecture for shor's factoring algorithm. In

Proceedings of the 36th annual international symposium on Computer archi-

tecture, ISCA '09, pages 383�394, New York, NY, USA, 2009. ACM.

[62] David J Wineland, C Monroe, WM Itano, D Leibfried, BE King, and

DM Meekhof. Experimental issues in coherent quantum-state manipulation

of trapped atomic ions. arXiv preprint quant-ph/9710025, 1997.

[63] DJ Wineland, C Monroe, WM Itano, BE King, D Leibfried, DM Meekhof,

C Myatt, and C Wood. Experimental primer on the trapped ion quantum

computer. spectroscopy, 7:8, 1998.

77

Bibliography

[64] Tao Yang and A Gerasoulis. PYRROS: static task scheduling and code gen-

eration for message passing multiprocessors. In Proceedings of the 6th inter-

national conference . . . , pages 428�437, 1992.

[65] Tao Yang and Apostolos Gerasoulis. List scheduling with and without com-

munication delays. Parallel Comput., 19(12):1321�1344, December 1993.

[66] Juan Yin, Yuan Cao, Hai-Lin Yong, Ji-Gang Ren, Hao Liang, Sheng-Kai

Liao, Fei Zhou, Chang Liu, Yu-Ping Wu, Ge-Sheng Pan, Li Li, Nai-Le Liu,

Qiang Zhang, Cheng-Zhi Peng, and Jian-Wei Pan. Lower bound on the speed

of nonlocal correlations without locality and measurement choice loopholes.

Phys. Rev. Lett., 110:260407, Jun 2013.

78

Appendix A

Supplementary Data

Figure A.1: The percent error of the scheduling algorithms from the ideal speedup.
Largely dominated by the low k values for Shor's, though TFP can also be im-
proved with higher k.

79

Appendix A. Supplementary Data

Figure A.2: The percentage of increase in speedup between runtimes without
movement costs and with movement costs, plotted logarithmically. All speedups
improve, typically nearly constant values within a scheduling algorithm. In more
serial algorithms, LPFS shows greater reduction in total moves (larger gains).
Both Shor's and TFP seem to bene�t more from increased instruction level par-
allelism (higher k) than from reduced data overhead.

80

Appendix B

Example Schedule

The following is a small example of the output produced while scheduling
the �le qft.sca�old. Each section describes the output generated. Only a single
schedule con�guration is followed: LPFS scheduling with k = 4, d = 1024, l = 1,
SIMD and Re�ll enabled.

B.1 Source Code

The source of qft.sca�old.

#include <math.h>

#define pi 3.141592653589793238462643383279502884197

module PhasePi8 (qbit bit) {

/* PhasePi8 matrix:

[[1 0]

[0 e^i*pi/8]]

Notes: Can be decomposed as Rz(-pi/8)*[[e^i*pi/16 0]

[0 e^i*pi/16]]

*/

Rz(bit , -1*pi/8);

}

module cT (qbit ctrl , qbit target) {

/* cT identity matrix:

[[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 e^i*pi/4]]

*/

PhasePi8(ctrl);

81

Appendix B. Example Schedule

Rz(target ,pi/8);

CNOT(target ,ctrl);

Rz(target ,-1*pi/8);

CNOT(target ,ctrl);

}

module cS (qbit ctrl , qbit target) {

/* cS identity matrix:

[[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 i]]

*/

T(ctrl);

Rz(target ,pi/4);

CNOT(target ,ctrl);

Rz(target ,-1*pi/4);

CNOT(target ,ctrl);

}

module cRz (qbit ctrl , qbit target , const double angle) {

/* cRz identity matrix:

[[1 0 0 0]

[0 1 0 0]

[0 0 e^(-i*angle /2) 0]

[0 0 0 e^(i*angle /2)]]

*/

Rz(target ,-1*angle /2);

CNOT(target ,ctrl);

Rz(target ,angle /2);

CNOT(target ,ctrl);

}

module qft5 (qbit bit[5]) {

H (bit[0]);

cS (bit[0], bit [1]);

H (bit[1]);

cT (bit[0], bit [2]);

cS (bit[1], bit [2]);

H (bit[2]);

cRz (bit[0], bit[3], pi/8);

cT (bit[1], bit [3]);

cS (bit[2], bit [3]);

H (bit[3]);

cRz (bit[0], bit[4], pi/16);

cRz (bit[1], bit[4], pi/8);

cT (bit[2], bit [4]);

cS (bit[3], bit [4]);

H (bit[4]);

}

int main () {

qbit reg [5];

cbit out [5];

82

Appendix B. Example Schedule

int i, qft;

for (i = 0; i < 5; i++) {

PrepZ(reg[i],0);

}

qft5(reg);

for (i = 0; i < 5; i++) {

out[i] = MeasX(reg[i]);

}

return 0;

}

B.2 Flattened LLVM Output

After compilation with LLVM, the LLVM IR is generated. All rotations have
been decomposed and all loops have been unrolled. This code is then analyzed
and �attened to a maximum of 2 million gates in a single module.

Due to the overall length the rotation decompositions are excerpted.

; ModuleID = 'qft.ll '

target datalayout = "e-p:64:64:64 -i1:8:8-i8:8:8-i16 :16:16 - i32 :32:32 - i64 :64:64 -←↩
f32 :32:32 - f64 :64:64 - v64 :64:64 - v128 :128:128 -a0:0:64-s0:64:64 - f80 :128:128 -n8←↩
:16:32:64 - S128"

target triple = "x86_64 -unknown -linux -gnu"

declare void @llvm.CNOT(i16 , i16) nounwind

declare void @llvm.T(i16) nounwind

declare void @llvm.H(i16) nounwind

define i32 @main() nounwind {

entry:

%reg = alloca [5 x i16], align 2

%out = alloca [5 x i1], align 1

%arrayidx = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 0

%0 = load i16* %arrayidx , align 2

call void @llvm.PrepZ(i16 %0 , i32 0)

%arrayidx .1 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 1

%1 = load i16* %arrayidx.1, align 2

call void @llvm.PrepZ(i16 %1 , i32 0)

%arrayidx .2 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 2

%2 = load i16* %arrayidx.2, align 2

call void @llvm.PrepZ(i16 %2 , i32 0)

%arrayidx .3 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 3

%3 = load i16* %arrayidx.3, align 2

call void @llvm.PrepZ(i16 %3 , i32 0)

%arrayidx .4 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 4

%4 = load i16* %arrayidx.4, align 2

call void @llvm.PrepZ(i16 %4 , i32 0)

%arraydecay = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 0

%5 = load i16* %arraydecay , align 2

call void @llvm.H(i16 %5) nounwind

%6 = load i16* %arraydecay , align 2

%arrayidx2.i = getelementptr inbounds i16* %arraydecay , i64 1

83

Appendix B. Example Schedule

%7 = load i16* %arrayidx2.i, align 2

call void @llvm.T(i16 %6) nounwind

call void @llvm.Tdag(i16 %7) nounwind

call void @llvm.Tdag(i16 %7) nounwind

...

call void @llvm.H(i16 %7) nounwind

call void @llvm.S(i16 %7) nounwind

call void @llvm.CNOT(i16 %7 , i16 %6) nounwind

%arrayidx3.i = getelementptr inbounds i16* %arraydecay , i64 1

%8 = load i16* %arrayidx3.i, align 2

call void @llvm.H(i16 %8) nounwind

%9 = load i16* %arraydecay , align 2

%arrayidx5.i = getelementptr inbounds i16* %arraydecay , i64 2

%10 = load i16* %arrayidx5.i, align 2

call void @llvm.Tdag(i16 %9) nounwind

call void @llvm.Tdag(i16 %9) nounwind

call void @llvm.Tdag(i16 %9) nounwind

...

call void @llvm.X(i16 %10) nounwind

call void @llvm.Sdag(i16 %10) nounwind

call void @llvm.CNOT(i16 %10 , i16 %9) nounwind

%arrayidx6.i = getelementptr inbounds i16* %arraydecay , i64 1

%11 = load i16* %arrayidx6.i, align 2

%arrayidx7.i = getelementptr inbounds i16* %arraydecay , i64 2

%12 = load i16* %arrayidx7.i, align 2

call void @llvm.T(i16 %11) nounwind

call void @llvm.Tdag(i16 %12) nounwind

call void @llvm.Tdag(i16 %12) nounwind

...

call void @llvm.Z(i16 %12) nounwind

call void @llvm.H(i16 %12) nounwind

call void @llvm.S(i16 %12) nounwind

call void @llvm.CNOT(i16 %12 , i16 %11) nounwind

%arrayidx8.i = getelementptr inbounds i16* %arraydecay , i64 2

%13 = load i16* %arrayidx8.i, align 2

call void @llvm.H(i16 %13) nounwind

%14 = load i16* %arraydecay , align 2

%arrayidx10.i = getelementptr inbounds i16* %arraydecay , i64 3

%15 = load i16* %arrayidx10.i, align 2

call void @llvm.Tdag(i16 %15) nounwind

call void @llvm.Tdag(i16 %15) nounwind

call void @llvm.Tdag(i16 %15) nounwind

...

call void @llvm.H(i16 %15) nounwind

call void @llvm.T(i16 %15) nounwind

call void @llvm.X(i16 %15) nounwind

call void @llvm.CNOT(i16 %15 , i16 %14) nounwind

%arrayidx11.i = getelementptr inbounds i16* %arraydecay , i64 1

%16 = load i16* %arrayidx11.i, align 2

%arrayidx12.i = getelementptr inbounds i16* %arraydecay , i64 3

%17 = load i16* %arrayidx12.i, align 2

call void @llvm.Tdag(i16 %16) nounwind

call void @llvm.Tdag(i16 %16) nounwind

call void @llvm.Tdag(i16 %16) nounwind

...

call void @llvm.T(i16 %17) nounwind

call void @llvm.X(i16 %17) nounwind

call void @llvm.Sdag(i16 %17) nounwind

call void @llvm.CNOT(i16 %17 , i16 %16) nounwind

%arrayidx13.i = getelementptr inbounds i16* %arraydecay , i64 2

84

Appendix B. Example Schedule

%18 = load i16* %arrayidx13.i, align 2

%arrayidx14.i = getelementptr inbounds i16* %arraydecay , i64 3

%19 = load i16* %arrayidx14.i, align 2

call void @llvm.T(i16 %18) nounwind

call void @llvm.Tdag(i16 %19) nounwind

call void @llvm.Tdag(i16 %19) nounwind

...

call void @llvm.H(i16 %19) nounwind

call void @llvm.S(i16 %19) nounwind

call void @llvm.CNOT(i16 %19 , i16 %18) nounwind

%arrayidx15.i = getelementptr inbounds i16* %arraydecay , i64 3

%20 = load i16* %arrayidx15.i, align 2

call void @llvm.H(i16 %20) nounwind

%21 = load i16* %arraydecay , align 2

%arrayidx17.i = getelementptr inbounds i16* %arraydecay , i64 4

%22 = load i16* %arrayidx17.i, align 2

call void @llvm.Tdag(i16 %22) nounwind

call void @llvm.Tdag(i16 %22) nounwind

call void @llvm.Tdag(i16 %22) nounwind

...

call void @llvm.Z(i16 %22) nounwind

call void @llvm.H(i16 %22) nounwind

call void @llvm.Sdag(i16 %22) nounwind

call void @llvm.CNOT(i16 %22 , i16 %21) nounwind

%arrayidx18.i = getelementptr inbounds i16* %arraydecay , i64 1

%23 = load i16* %arrayidx18.i, align 2

%arrayidx19.i = getelementptr inbounds i16* %arraydecay , i64 4

%24 = load i16* %arrayidx19.i, align 2

call void @llvm.Tdag(i16 %24) nounwind

call void @llvm.Tdag(i16 %24) nounwind

call void @llvm.Tdag(i16 %24) nounwind

...

call void @llvm.H(i16 %24) nounwind

call void @llvm.T(i16 %24) nounwind

call void @llvm.X(i16 %24) nounwind

call void @llvm.CNOT(i16 %24 , i16 %23) nounwind

%arrayidx20.i = getelementptr inbounds i16* %arraydecay , i64 2

%25 = load i16* %arrayidx20.i, align 2

%arrayidx21.i = getelementptr inbounds i16* %arraydecay , i64 4

%26 = load i16* %arrayidx21.i, align 2

call void @llvm.Tdag(i16 %25) nounwind

call void @llvm.Tdag(i16 %25) nounwind

call void @llvm.Tdag(i16 %25) nounwind

...

call void @llvm.T(i16 %26) nounwind

call void @llvm.X(i16 %26) nounwind

call void @llvm.Sdag(i16 %26) nounwind

call void @llvm.CNOT(i16 %26 , i16 %25) nounwind

%arrayidx22.i = getelementptr inbounds i16* %arraydecay , i64 3

%27 = load i16* %arrayidx22.i, align 2

%arrayidx23.i = getelementptr inbounds i16* %arraydecay , i64 4

%28 = load i16* %arrayidx23.i, align 2

call void @llvm.T(i16 %27) nounwind

call void @llvm.Tdag(i16 %28) nounwind

call void @llvm.Tdag(i16 %28) nounwind

...

call void @llvm.Z(i16 %28) nounwind

call void @llvm.H(i16 %28) nounwind

call void @llvm.S(i16 %28) nounwind

call void @llvm.CNOT(i16 %28 , i16 %27) nounwind

85

Appendix B. Example Schedule

%arrayidx24.i = getelementptr inbounds i16* %arraydecay , i64 4

%29 = load i16* %arrayidx24.i, align 2

call void @llvm.H(i16 %29) nounwind

%arrayidx5 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 0

%30 = load i16* %arrayidx5 , align 2

%31 = call i1 @llvm.MeasX(i16 %30)

%arrayidx7 = getelementptr inbounds [5 x i1]* %out , i64 0, i64 0

call void @store_cbit(i1 %31 , i1* %arrayidx7) nounwind

store i1 %31 , i1* %arrayidx7 , align 1

%arrayidx5 .1 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 1

%32 = load i16* %arrayidx5 .1, align 2

%33 = call i1 @llvm.MeasX(i16 %32)

%arrayidx7 .1 = getelementptr inbounds [5 x i1]* %out , i64 0, i64 1

call void @store_cbit(i1 %33 , i1* %arrayidx7 .1) nounwind

store i1 %33 , i1* %arrayidx7 .1, align 1

%arrayidx5 .2 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 2

%34 = load i16* %arrayidx5 .2, align 2

%35 = call i1 @llvm.MeasX(i16 %34)

%arrayidx7 .2 = getelementptr inbounds [5 x i1]* %out , i64 0, i64 2

call void @store_cbit(i1 %35 , i1* %arrayidx7 .2) nounwind

store i1 %35 , i1* %arrayidx7 .2, align 1

%arrayidx5 .3 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 3

%36 = load i16* %arrayidx5 .3, align 2

%37 = call i1 @llvm.MeasX(i16 %36)

%arrayidx7 .3 = getelementptr inbounds [5 x i1]* %out , i64 0, i64 3

call void @store_cbit(i1 %37 , i1* %arrayidx7 .3) nounwind

store i1 %37 , i1* %arrayidx7 .3, align 1

%arrayidx5 .4 = getelementptr inbounds [5 x i16]* %reg , i64 0, i64 4

%38 = load i16* %arrayidx5 .4, align 2

%39 = call i1 @llvm.MeasX(i16 %38)

%arrayidx7 .4 = getelementptr inbounds [5 x i1]* %out , i64 0, i64 4

call void @store_cbit(i1 %39 , i1* %arrayidx7 .4) nounwind

store i1 %39 , i1* %arrayidx7 .4, align 1

ret i32 0

}

declare void @llvm.PrepZ(i16 , i32) nounwind

declare i1 @llvm.MeasX(i16) nounwind

declare void @store_cbit(i1, i1*)

declare void @llvm.Tdag(i16) nounwind

declare void @llvm.Z(i16) nounwind

declare void @llvm.S(i16) nounwind

declare void @llvm.X(i16) nounwind

declare void @llvm.Sdag(i16) nounwind

declare void @llvm.Y(i16) nounwind

86

Appendix B. Example Schedule

B.3 QASM Output from LLVM

The QASM output is initially scheduled with a simple list scheduler. This
gives the numbers at the begining of the lines. This schedule is ignored.

Due to length the following is excerpted to show relevant structure.

SIMD_K 4, SIMD_D 1024

#Function main

#Timestep GateName Operand1 Operand2

1 PrepZ reg1

2 Tdag reg1

3 Tdag reg1

...

340 T reg1

341 H reg1

342 T reg1

1 PrepZ reg0

2 H reg0

343 Y reg1

344 H reg1

3 T reg0

345 CNOT reg1 reg0

346 Tdag reg1

...

647 T reg1

1 PrepZ reg2

648 H reg1

2 Tdag reg2

649 Tdag reg1

650 Z reg1

3 Tdag reg2

4 Tdag reg2

651 H reg1

...

4630 S reg4

4631 CNOT reg4 reg3

4632 H reg4

4633 MeasX reg4

4633 MeasX reg0

4633 MeasX reg1

4633 MeasX reg2

4633 MeasX reg3

#EndFunction

B.4 Leaf Schedules

The leaf functions (all modules without submodule calls) are scheduled by the
Perl scheduler. Each function is independently evaluated, so all scheduling is �ne-
grained and no rescheduling of parallel modules is performed. The Perl scheduler
handles both RCP and LPFS scheduling. The shown results are for LPFS with k
= 4, d = 1024, l = 1, with SIMD and Re�ll enabled.

87

Appendix B. Example Schedule

Due to length the following is excerpted to show interesting details.

M: $:: SIMD_K =4; $:: SIMD_D =1024; $:: SIMD_L =1

LPFS:

Function: main (sched: lpfs , op_cnt: 8426, k: 4, d: 1024, l: 1, opp: 1, refill:←↩
1)

==←↩

ops = 7673

moves = 753

total = 8426

ots = 4633

mts = 561

ts = 6877

SIMDs = 4

tgates = 2459

T(1) = 15346

T(inf) = 4633

T(4 ,1024) = 6877

Speedup = 2.23149629198779

Efficiency = 0.557874072996946

Utility = 0.306310891377054

Quality = 0.306310891377054

Overhead = 8.93662473296938% (reduction: 57.7300419336973)

Avg load = 1.34224598930481

Peak load = 5

0,0 MOV 1 0 reg0

0,0 MOV 1 0 reg1

0,0 MOV 1 0 reg2

0,0 MOV 1 0 reg3

0,0 MOV 1 0 reg4

0,1 1669: PrepZ reg3

0,1 1: PrepZ reg1

0,1 2941: PrepZ reg4

0,1 343: PrepZ reg0

0,1 651: PrepZ reg2

1,0 MOV 2 1 reg0

1,1 1672: Tdag reg3

1,1 2945: Tdag reg4

1,1 2: Tdag reg1

1,1 653: Tdag reg2

1,2 344: H reg0

2,1 1673: Tdag reg3

2,1 2948: Tdag reg4

2,1 3: Tdag reg1

2,1 656: Tdag reg2

2,2 347: T reg0

3,1 1675: Tdag reg3

3,1 2950: Tdag reg4

3,1 4: Tdag reg1

3,1 657: Tdag reg2

4,1 1677: Tdag reg3

4,1 2953: Tdag reg4

4,1 5: Tdag reg1

4,1 660: Tdag reg2

5,0 MOV 0 2 reg0

5,0 MOV 2 1 reg3

5,0 MOV 3 1 reg4

5,1 662: Tdag reg2

88

Appendix B. Example Schedule

5,1 6: Tdag reg1

5,2 1680: T reg3

5,3 2956: H reg4

6,1 664: Z reg2

6,1 7: Z reg1

6,2 1682: H reg3

6,3 2959: Tdag reg4

7,1 665: H reg2

7,1 8: H reg1

7,2 1684: Tdag reg3

7,3 2964: Z reg4

...

4630,1 7667: CNOT reg4 reg3

4631,0 MOV 0 2 reg2

4631,0 MOV 2 1 reg3

4631,1 7668: H reg4

4631,2 7673: MeasX reg3

4632,1 7669: MeasX reg4

B.5 Full Schedule

After the leaves are scheduled, an LLVM optimizer pass will read in the result-
ing schedules and perform coarse-grained scheduling of the hierarchical modules.
Only the �nal results are typically reported.

#Function main

SIMD k=4 d=1024 main 4 4633 0 0 1832 1832 4 4 leaf=1

#Num of SIMD time steps for function main : 4633

89

Appendix C

Resources

The Sca�CC code can be obtained from GitHub at https://github.com/

ajavadia/ScaffCC.
The scheduling scripts can be obtained at https://github.com/jheckey/

ScaffSched.

90

https://github.com/ajavadia/ScaffCC
https://github.com/ajavadia/ScaffCC
https://github.com/jheckey/ScaffSched
https://github.com/jheckey/ScaffSched

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Quantum Computation
	Quantum Technologies and Architectures
	Data Movement and Teleportation
	Scaffold, CTQG, and QASM
	Execution Model

	Methods
	Quantum Benchmark Algorithms Used
	Ready Critical Path (RCP) Algorithm
	Longest Path First Scheduling (LPFS) Algorithm
	Hierarchical Scheduling
	Algorithm Optimizations

	Results
	Runtime Speedup of Instruction- and Data-Level Parallelism
	Runtime Speedup with Data Movement Analysis
	Data-parallelism Sensitivity
	RCP Configuration Variability
	LPFS Configuration Variability

	Communication Costs, Requirements and Limits
	Sustained Throughput Requirements
	Peak Bandwidth Limits

	Related Work
	Future Work
	Conclusion
	Bibliography
	Supplementary Data
	Example Schedule
	Source Code
	Flattened LLVM Output
	QASM Output from LLVM
	Leaf Schedules
	Full Schedule

	Resources

